1. <rp id="zsypk"></rp>

      2. 二次根式教案

        時間:2022-10-28 14:32:32 教案 我要投稿

        【熱門】二次根式教案四篇

          作為一名無私奉獻的老師,可能需要進行教案編寫工作,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。寫教案需要注意哪些格式呢?以下是小編為大家整理的二次根式教案4篇,希望對大家有所幫助。

        【熱門】二次根式教案四篇

        二次根式教案 篇1

          【 學(xué)習(xí)目標(biāo) 】

          1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

          2、過程與方法:進一步體會分類討論的數(shù)學(xué)思想。

          3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

          【 學(xué)習(xí)重難點 】

          1、重點:準(zhǔn)確理解二次根式的概念,并能進行簡單的計算。

          2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。

          【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

          【 學(xué)習(xí)流程 】

          一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

          學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

          二、 課堂教學(xué)

          (一)合作學(xué)習(xí)階段。

          教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。

          (二)集體講授階段。(15分鐘左右)

          1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進行解答,不足的本組成員可以補充。

          2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進行集體講解。

          3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

          (三)當(dāng)堂檢測階段

          為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進行及時的鞏固,對學(xué)生進行當(dāng)堂檢測,測試完試卷上交。

          (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當(dāng)調(diào)整次序或交叉進行)

          三、 課后作業(yè)(課后作業(yè)見附件2)

          教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進一步鞏固提高課堂所學(xué)。

          四、板書設(shè)計

          課題:二次根式(1)

          二次根式概念 例題 例題

          二次根式性質(zhì)

          反思:

        二次根式教案 篇2

          教學(xué)目標(biāo)

          1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

          2.熟練地進行二次根式的加、減、乘、除混合運算.

          教學(xué)重點和難點

          重點:含二次根式的式子的混合運算.

          難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

          教學(xué)過程設(shè)計

          一、復(fù)習(xí)

          1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

          指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

          2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

          指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

          計算結(jié)果要把分母有理化.

          3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

          4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

          二、例題

          例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

          分析:

          (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

          (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

          (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

          x-2且x0.

          解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

          例3

          分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

          解 因為1-a>0,3-a0,所以

          a<1,|a-2|=2-a.

          (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

          這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

          問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

          分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

          注意:

          所以在化簡過程中,

          例6

          分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

          a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

          三、課堂練習(xí)

          1.選擇題:

          A.a(chǎn)2B.a(chǎn)2

          C.a(chǎn)2D.a(chǎn)<2

          A .x+2 B.-x-2

          C.-x+2D.x-2

          A.2x B.2a

          C.-2x D.-2a

          2.填空題:

          4.計算:

          四、小結(jié)

          1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

          2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

          3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

          4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

          五、作業(yè)

          1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

          2.把下列各式化成最簡二次根式:

        二次根式教案 篇3

          教材分析:

          本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

          學(xué)生分析:

          本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

          設(shè)計理念:

          新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的`基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學(xué)習(xí)。

          教學(xué)目標(biāo)知識與技能目標(biāo):

          會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

          過程與方法目標(biāo):

          通過類比整式加減法運算體驗二次根式加減法運算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

          情感態(tài)度與價值觀:

          通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.

          重點、難點:重點:

          合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

          難點:

          二次根式加減法的實際應(yīng)用。

          關(guān)鍵問題 :

          了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

          教學(xué)方法:.

          1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

          2. 類比法:由實際問題導(dǎo)入二次根式加減運算;類比合并同類項合并同類二次根式。

          3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

        二次根式教案 篇4

          一、教學(xué)目標(biāo)

          1.理解分母有理化與除法的關(guān)系.

          2.掌握二次根式的分母有理化.

          3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.

          4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

          二、教學(xué)設(shè)計

          小結(jié)、歸納、提高

          三、重點、難點解決辦法

          1.教學(xué)重點:分母有理化.

          2.教學(xué)難點:分母有理化的技巧.

          四、課時安排

          1課時

          五、教具學(xué)具準(zhǔn)備

          投影儀、膠片、多媒體

          六、師生互動活動設(shè)計

          復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

          七、教學(xué)過程

          【復(fù)習(xí)提問】

          二次根式混合運算的步驟、運算順序、互為有理化因式.

          例1 說出下列算式的運算步驟和順序:

          (1) (先乘除,后加減).

          (2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).

          (3)辨別有理化因式:

          有理化因式: 與 , 與 , 與 …

          不是有理化因式: 與 , 與 …

          化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

          例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

          引入新課題.

          【引入新課】

          化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

          例2 把下列各式的分母有理化:

         。1) ; (2) ; (3)

          解:略.

          注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

        【二次根式教案】相關(guān)文章:

        二次根式的教案10-19

        《二次根式的運算》的教案06-20

        關(guān)于二次根式教案08-27

        《二次根式的運算》的教案09-07

        【精選】二次根式教案3篇08-13

        二次根式教案4篇07-21

        二次根式教案九篇02-06

        【精選】二次根式教案4篇07-02

        二次根式說課稿01-11

        什么是同類二次根式,什么是最簡二次根式09-30

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>