基本不等式說課稿范文
作為一名教學(xué)工作者,總歸要編寫說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么什么樣的說課稿才是好的呢?以下是小編為大家收集的基本不等式說課稿范文,歡迎大家分享。
基本不等式說課稿1
大家上午好!我是來應(yīng)聘高中數(shù)學(xué)的一號考生,我今天說課的題目是《基本不等式》,下面我將從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)過程,說板書設(shè)計六個方面展開我的說課,下面開始我的說課!
一、說教材。
1、教材的地位和作用:
《基本不等式》是人教版高中數(shù)學(xué)必修五第三章第四節(jié)的內(nèi)容。本節(jié)主要內(nèi)容是基本不等式的證明和簡單應(yīng)用。它是在學(xué)完不等式性質(zhì),不等式的解法及線性規(guī)劃等知識的基礎(chǔ)上,對不等式的進(jìn)一步研究,在不等式的證明和求最值的過程中有著廣泛的應(yīng)用。
2、教學(xué)目標(biāo):
。1)知識與技能:學(xué)生能寫出基本不等式,會應(yīng)用基本不等式解決相關(guān)問題。
。2)過程與方法:學(xué)生通過觀察圖形,推導(dǎo)、證明等過程,培養(yǎng)觀察、分析、歸納、總結(jié)的能力。
。3)情感態(tài)度與價值觀:學(xué)生領(lǐng)略數(shù)學(xué)的實際應(yīng)用價值,感受數(shù)學(xué)學(xué)習(xí)的樂趣。
3、教學(xué)重難點:
重點:理解基本不等式的本質(zhì)并會解決實際問題。
難點:基本不等式幾何意義的理解。
二、說學(xué)情。
為了更好地實現(xiàn)教學(xué)目標(biāo),我將對學(xué)生情況進(jìn)行一下簡要分析。對于高一年級的學(xué)生來說,他們對不等式的知識有了一定的了解,但對基本不等式的理解運用能力不足。這一階段的學(xué)生正處在由抽象思維到邏輯思維的過渡期,對圖形的觀察、分析、總結(jié)可能會感到比較困難。這都將成為我組織教學(xué)的考慮因素。
三、說教法。
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教育學(xué)的和諧完美與統(tǒng)一。根據(jù)本節(jié)課的特點并結(jié)合新課改的要求,在本節(jié)課中,我將采用講授法、演示法、引導(dǎo)啟發(fā)法等教學(xué)方法。
四、說學(xué)法。
教師的教是為了學(xué)生更好地學(xué),結(jié)合本節(jié)內(nèi)容,我將學(xué)法確定為自主探究法、分析歸納法。充分調(diào)動學(xué)生的眼、手、腦等多種感官參與學(xué)習(xí),既培養(yǎng)了他們的學(xué)習(xí)興趣,又使他們感受到了學(xué)習(xí)的樂趣。
五、說教學(xué)過程。
首先,我將利用多媒體戰(zhàn)士2002年國際數(shù)學(xué)家大會的會標(biāo),讓同學(xué)們邊觀察邊思考:圖上有哪些相等或不等關(guān)系?通過展示來激發(fā)學(xué)生的學(xué)習(xí)興趣。接下來是新授環(huán)節(jié)。
我將會標(biāo)抽象成幾何圖形,正方形ABCD中有4個全等的直角三角形,讓學(xué)生自主探究,比較三角形面積之和與正方形面積的大小,從而讓學(xué)生自主推導(dǎo)出不等式a2+b2>2ab,再通過引導(dǎo)啟發(fā),讓學(xué)生自己將結(jié)論補(bǔ)充完整。接下來,我會提問:你們能給出它的證明嗎?給兩分鐘的時間讓學(xué)生自主探究。然后用講授法給出基本不等式的`常用形式ab≤a+b(a>0,b>0),并給出具體的證明過程,強(qiáng)調(diào)等號成立的條件。基本不2
等式的證明是本節(jié)課的重點,先通過學(xué)生的自主探究,再通過我的講授,學(xué)生可以更快地理解這一知識點。接下來是探究基本不等式的幾何意義。先由學(xué)生自主思考兩分鐘的時間,然后通過我的講授,讓學(xué)生理解基本不等式的幾何意義,最后通過幾何畫板動態(tài)演示,讓學(xué)生更直觀地感受基本不等式的幾何意義。這樣就突破了基本不等式的幾何意義這一難點。接下來是鞏固練習(xí)環(huán)節(jié)。
這個環(huán)節(jié),我將利用兩個例題對剛才所講的知識進(jìn)行鞏固練習(xí)。
例1:證明(1)x+1≥2(x>0)x
(2)a+1≥2a(a≥0)
例2:(1)用籬笆圍一個面積為100m的矩形菜園。問矩形長寬各為多少時,所用籬笆最短?
。2)一段長為36m的籬笆圍成一個矩形菜園,問長寬各為多少時面積最大?第一個例題不是課本例題,它比課本例題簡單,這樣循序漸進(jìn),有利于學(xué)生理解不等式的內(nèi)涵,此處a、b不僅僅是一個字母,而是一個符號,可以是具體數(shù)字,也可以是一個多項式。對于這個例題,多數(shù)學(xué)生會仿照課本上的思路用分析法進(jìn)行證明。
第二個例題是利用基本不等式求最值進(jìn)而解決實際問題,體現(xiàn)了基本不等式的應(yīng)用價值,而且例題包含了公式的正向應(yīng)用和逆向應(yīng)用,鍛煉了學(xué)生的靈活使用能力。
下面是小結(jié)環(huán)節(jié)。我將讓學(xué)生用兩分鐘的時間回顧本節(jié)課所學(xué)習(xí)的內(nèi)容,并自己總結(jié)出本節(jié)的知識點。這樣不但能鞏固本節(jié)所學(xué)知識,而且能培養(yǎng)學(xué)生分析、歸納、總結(jié)的能力。
然后是布置作業(yè)。為了在課后對所學(xué)的知識進(jìn)行鞏固,我將布置課后習(xí)題第2題,第4題作為練習(xí)題。
基本不等式說課稿2
尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《基本不等式》。
接下來我將從教材分析、學(xué)情分析、教學(xué)重難點、教學(xué)方法、教學(xué)過程等幾個方面展開我的說課。
一、說教材
我認(rèn)為要真正的教好一節(jié)課,首先就是要對教材熟悉,那么我就先來說一說我對本節(jié)課教材的理解!痘静坏仁健吩谌私藺版高中數(shù)學(xué)必修五第三章第四節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。
二、說學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。
三、說教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,結(jié)合本節(jié)課的知識內(nèi)容以及課標(biāo)要求,我制定了如下的三維教學(xué)目標(biāo):
。ㄒ唬┲R與技能
掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。
。ǘ┻^程與方法
經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。
。ㄈ┣楦袘B(tài)度價值觀
在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。
四、說教學(xué)重難點
并且我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:基本不等式的形式以及推導(dǎo)過程。而作為高中內(nèi)容,命題的嚴(yán)謹(jǐn)性是必要的,所以本節(jié)課的教學(xué)難點是:基本不等式的推導(dǎo)以及證明過程。
五、說教法和學(xué)法
那么想要很好的呈現(xiàn)以上的想法,就需要教師合理設(shè)計教法和學(xué)法。根據(jù)本節(jié)課的內(nèi)容特點,我認(rèn)為應(yīng)該選擇講授法,練習(xí)法,學(xué)生自主思考探索等教學(xué)方法。
六、說教學(xué)過程
而教學(xué)方法的具象化就是教學(xué)過程,基于新課標(biāo)提出的教學(xué)過程是師生積極參與、交往互動、共同發(fā)展的過程。我試圖通過我的教學(xué)過程,打造一個充滿生命力的課堂。
。ㄒ唬┬抡n導(dǎo)入
教學(xué)過程的第一步是新課導(dǎo)入環(huán)節(jié)。
我先PPT出示的是北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)我國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的。
提問:你能在這個圖中找到不等關(guān)系么?
引出課題。
通過展示會標(biāo)并提問的形式,一方面可以引發(fā)學(xué)生的好奇心和求知欲,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面直入課題,可以很好的過渡到今天的主題內(nèi)容:推導(dǎo)基本不等式。
。ǘ┬轮剿
接下來是教學(xué)中最重要的新知探索環(huán)節(jié)。
(1)通過導(dǎo)入的問題,學(xué)生思考:通過趙爽弦圖推可以發(fā)現(xiàn)哪些不等關(guān)系呢?
學(xué)生小組探究:利用趙爽弦圖推導(dǎo)出基本不等式。
之后請學(xué)生把證明過程進(jìn)行板書:
(2)“探究”,幾何證明。
分析法是從結(jié)果入手,由果索因;幾何法是由幾何中的不等關(guān)系,進(jìn)行證明。此類不等式的證明分析法理解簡單,幾何法稍難。學(xué)生通過兩種證明過程,加深基本不等式的理解,還練習(xí)了證明方法。
至此本節(jié)課的主要教學(xué)內(nèi)容已經(jīng)完成,學(xué)生在我層次性問題的引導(dǎo)下,一步步通過自己的思考和探索,發(fā)現(xiàn)基本不等式,通過不同的方法證明了基本不等式。重點得以突出,難點得以突破。
。ㄈ┱n堂練習(xí)
當(dāng)然一節(jié)課只得出結(jié)論還是不夠的,作為一節(jié)數(shù)學(xué)課要及時對知識進(jìn)行應(yīng)用。所以我設(shè)計了如下兩道課堂練習(xí):
。2)一段長為36m的籬笆圍成矩形菜園,問這個矩形的長、寬各為多少時菜園面積最大?最大面積是多少?
這樣的問題能夠兼顧到本節(jié)課的所有主要內(nèi)容,并且問題具有層次性,能讓學(xué)生初步感知基本不等式應(yīng)用中“積定和最小,和定積最大”的規(guī)律,為后續(xù)基本不等式的應(yīng)用做好了鋪墊,利于學(xué)生的思維發(fā)展。
。ㄋ模┬〗Y(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。
本節(jié)課的課后作業(yè)我設(shè)計為開放性問題:思考還有什么方法能夠證明基本不等式?可以利用書本資料,也可以上網(wǎng)查閱資料。
這樣的作業(yè)設(shè)置能夠有效激發(fā)學(xué)生思考,不限制學(xué)生的思維,真正做到以學(xué)生為主體,讓學(xué)生學(xué)會自主學(xué)習(xí)。
【基本不等式說課稿范文】相關(guān)文章:
基本不等式教學(xué)反思10-21
基本不等式教學(xué)反思11篇12-26
基本不等式教學(xué)反思11篇12-26
基本不等式教學(xué)設(shè)計(通用8篇)05-05
絕對值不等式的基本性質(zhì)10-12
不等式的基本性質(zhì)課后說課12-17
不等式的8條基本性質(zhì)是什么10-12
等式的基本性質(zhì)說課稿11-04
哲學(xué)的基本問題說課稿12-07