1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)教案

        時間:2022-12-26 12:45:49 數(shù)學(xué)教案 我要投稿
        • 相關(guān)推薦

        高一數(shù)學(xué)教案(精選15篇)

          作為一名專為他人授業(yè)解惑的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么問題來了,教案應(yīng)該怎么寫?以下是小編幫大家整理的高一數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

        高一數(shù)學(xué)教案(精選15篇)

        高一數(shù)學(xué)教案1

          1、知識與技能

          (1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

          (2)理解任意角的三角函數(shù)不同的定義方法;

          (3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

          (4)掌握并能初步運(yùn)用公式一;

          (5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).

          2、過程與方法

          初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).

          3、情態(tài)與價值

          任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.

          本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.

          教學(xué)重難點(diǎn)

          重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

          難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.

        高一數(shù)學(xué)教案2

          [三維目標(biāo)]

          一、知識與技能:

          1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號及它們之間的關(guān)系

          2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

          3、了解集合元素個數(shù)問題的討論說明

          二、過程與方法

          通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法

          三、情感態(tài)度與價值觀

          培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維

          [教學(xué)重點(diǎn)、難點(diǎn)]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀

          [教學(xué)方法]:講練結(jié)合法

          [授課類型]:復(fù)習(xí)課

          [課時安排]:1課時

          [教學(xué)過程]:集合部分匯總

          本單元主要介紹了以下三個問題:

          1,集合的含義與特征

          2,集合的表示與轉(zhuǎn)化

          3,集合的基本運(yùn)算

          一,集合的含義與表示(含分類)

          1,具有共同特征的對象的全體,稱一個集合

          2,集合按元素的個數(shù)分為:有限集和無窮集兩類

        高一數(shù)學(xué)教案3

          教學(xué)目標(biāo)

          1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.

          2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.

          3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辯證唯物主義的教育.

          教學(xué)重點(diǎn)與難點(diǎn)

          教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.

          教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.

          教學(xué)過程設(shè)計

          一、引入新課

          師:請同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?

         。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)

          第一組:

          第二組:

          生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。

          師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.

         。c(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識的,又是新的知識,引起學(xué)生的注意.)

          二、對概念的分析

         。ò鍟n題:)

          師:請同學(xué)們打開課本第51頁,請××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.

          (學(xué)生朗讀.)

          師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學(xué)們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

          生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.

          師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!

         。ㄍㄟ^教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)

          師:現(xiàn)在請同學(xué)們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.

         。ㄖ笀D說明.)

          師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.

          (教師指圖說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)

          師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……

         。ú话言捳f完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)

          生:較大的函數(shù)值的函數(shù).

          師:那么減函數(shù)呢?

          生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).

         。▽W(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)

          師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認(rèn)識定義?

         。▽W(xué)生思索.)

          學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會學(xué)生如何深入理解一個概念,以培養(yǎng)學(xué)生分析問題,認(rèn)識問題的能力.

          (教師在學(xué)生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當(dāng)加重語氣.在學(xué)生感到無從下手時,給以適當(dāng)?shù)奶崾荆?/p>

          生:我認(rèn)為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.

          師:很好,我們在學(xué)習(xí)任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學(xué)習(xí)幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?

          生:不能.因?yàn)榇藭r函數(shù)值是一個數(shù).

          師:對.函數(shù)在某一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學(xué)過的例子?

          生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).

         。ㄔ趯W(xué)生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)

          師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.

          師:還有沒有其他的關(guān)鍵詞語?

          生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.

          師:你答的很對.能解釋一下為什么嗎?

          (學(xué)生不一定能答全,教師應(yīng)給予必要的提示.)

          師:“屬于”是什么意思?

          生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。

          師:如果是閉區(qū)間的話,能否取自區(qū)間端點(diǎn)?

          生:可以.

          師:那么“任意”和“都有”又如何理解?

          生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).

          師:能不能構(gòu)造一個反例來說明“任意”呢?

         。ㄗ寣W(xué)生思考片刻.)

          生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.

          師:那么如何來說明“都有”呢?

          生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時,有f(x1)>f(x2);當(dāng)x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).

          師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點(diǎn)的情況來判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.

         。ń處熗ㄟ^一系列的設(shè)問,使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學(xué)生加深對定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)

          師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.

          (用辯證法的原理來解釋數(shù)學(xué)知識,同時用數(shù)學(xué)知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)

          三、概念的應(yīng)用

          例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?

         。ㄓ猛队盎脽艚o出圖象.)

          生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.

          生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?

          師:問得好.這說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.

          例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).

          師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.

         。ㄖ赋鲇枚x證明的必要性.)

          師:怎樣用定義證明呢?請同學(xué)們思考后在筆記本上寫出證明過程.

         。ń處熝惨,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)

          師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.

          生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當(dāng)x1<x2時,

          f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

          所以f(x)是增函數(shù).

          師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因?yàn)閤1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).

          這就是我們用定義證明函數(shù)增減性的四個步驟,請同學(xué)們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。

         。▽W(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢.在學(xué)生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)

          調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.

          師:你的結(jié)論是什么呢?

          上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).

          生乙:我有不同的意見,我認(rèn)為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).

          生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).

          域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.

          上是減函數(shù).

          (教師巡視.對學(xué)生證明中出現(xiàn)的問題給予點(diǎn)拔.可依據(jù)學(xué)生的問題,給出下面的提示:

         。1)分式問題化簡方法一般是通分.

         。2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.

          要注意在不等式兩邊同乘以一個負(fù)數(shù)的時候,不等號方向要改變.

          對學(xué)生的解答進(jìn)行簡單的分析小結(jié),點(diǎn)出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)

          四、課堂小結(jié)

          師:請同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?

         。ㄕ堃粋思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)

          生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應(yīng)該注意證明的四個步驟.

          五、作業(yè)

          1.課本P53練習(xí)第1,2,3,4題.

          數(shù).

          =a(x1-x2)(x1+x2)+b(x1-x2)

          =(x1-x2)[a(x1+x2)+b].(*)

          +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

          課堂教學(xué)設(shè)計說明

          是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用.對學(xué)生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學(xué)生對此有一定的感性認(rèn)識,對概念的理解有一定好處,但另一方面學(xué)生也會覺得是已經(jīng)學(xué)過的知識,感覺乏味.因此,在設(shè)計教案時,加強(qiáng)了對概念的分析,希望能夠使學(xué)生認(rèn)識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.

          另外,對概念的分析是在引進(jìn)一個新概念時必須要做的,對概念的深入的正確的理解往往是學(xué)生認(rèn)知過程中的難點(diǎn).因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對如何學(xué)會、弄懂一個概念有初步的認(rèn)識,并且在以后的學(xué)習(xí)中學(xué)有所用.

          還有,使用函數(shù)單調(diào)性定義證明是一個難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學(xué)作一定的鋪墊.

        高一數(shù)學(xué)教案4

          學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對您有所幫助!

          教學(xué)目標(biāo)

          1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.

          (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.

          (2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.

          (3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.

          2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

          3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.

          教學(xué)建議

          (1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.

          (2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

          (3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.

          (4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點(diǎn),要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.

          (5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項和的概念,用表示的問題是重點(diǎn)問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.

          (6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的.

          上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!

        高一數(shù)學(xué)教案5

          教學(xué)目標(biāo)

          1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

          (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

          (2)能從數(shù)和形兩個角度認(rèn)識單調(diào)性和奇偶性.

          (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

          2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

          3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

          教學(xué)建議

          一、知識結(jié)構(gòu)

          (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

          (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

          二、重點(diǎn)難點(diǎn)分析

          (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

          (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).

          三、教法建議

          (1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.

          (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

          函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

        高一數(shù)學(xué)教案6

          知識結(jié)構(gòu)

          重難點(diǎn)分析

          本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.

          本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時,則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.

          教法建議

          1.性質(zhì)的引入方法很多,以下2種比較常用:

          (1)設(shè)計問題引導(dǎo)啟發(fā):由設(shè)計的問題

          1)、、各等于什么?

          2)、、各等于什么?

          啟發(fā)、引導(dǎo)學(xué)生猜想出

          (2)從算術(shù)平方根的意義引入.

          2.性質(zhì)的鞏固有兩個方面需要注意:

          (1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;

          (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時要注意細(xì)分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進(jìn)行因式分解的多項式,等等.

          (第1課時)

          一、教學(xué)目標(biāo)

          1.掌握二次根式的性質(zhì)

          2.能夠利用二次根式的性質(zhì)化簡二次根式

          3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法

          二、教學(xué)設(shè)計

          對比、歸納、總結(jié)

          三、重點(diǎn)和難點(diǎn)

          1.重點(diǎn):理解并掌握二次根式的性質(zhì)

          2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.

          四、課時安排

          1課時

          五、教B具學(xué)具準(zhǔn)備

          投影儀、膠片、多媒體

          六、師生互動活動設(shè)計

          復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主

          七、教學(xué)過程

          一、導(dǎo)入新課

          我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.

          問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?

          答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).

          二、新課

          計算下列各題,并回答以下問題:

          (1);(2);(3);

          1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?

          2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?

          3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.

        高一數(shù)學(xué)教案7

          一、教學(xué)目標(biāo)

          1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

          2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式。

          二、能力目標(biāo)

          1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象思維能力。

          2、通過由已知信息寫一次函數(shù)表達(dá)式的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

          三、情感目標(biāo)

          1、通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

          2、經(jīng)歷利用一次函數(shù)解決實(shí)際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

          四、教學(xué)重難點(diǎn)

          1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

          2、會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

          五、教學(xué)過程

          1、新課導(dǎo)入

          有關(guān)函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長度相應(yīng)的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,

          請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。

         。1)計算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,

         。2)你能寫出x與y之間的關(guān)系式嗎?

          分析:當(dāng)不掛物體時,彈簧長度為3厘米,當(dāng)掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

          2、做一做

          某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關(guān)系嗎?(y=1000。18x或y=100 x)

          接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

          3、一次函數(shù),正比例函數(shù)的概念

          若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。

          4、例題講解

          例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

         、賧=x6;②y= ;③y= ;④y=7x

          A、①②③ B、①③④ C、①②③④ D、②③④

          分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

        高一數(shù)學(xué)教案8

          學(xué)習(xí)目標(biāo):

          (1)理解函數(shù)的概念

          (2)會用集合與對應(yīng)語言來刻畫函數(shù),

          (3)了解構(gòu)成函數(shù)的要素。

          重點(diǎn):

          函數(shù)概念的理解

          難點(diǎn)

          函數(shù)符號y=f(x)的理解

          知識梳理:

          自學(xué)課本P29—P31,填充以下空格。

          1、設(shè)集合A是一個非空的實(shí)數(shù)集,對于A內(nèi) ,按照確定的對應(yīng)法則f,都有 與它對應(yīng),則這種對應(yīng)關(guān)系叫做集合A上的一個函數(shù),記作 。

          2、對函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個函數(shù)的 ,所有函數(shù)值的集合 叫做這個函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。

          3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個函數(shù)只需要

          。

          4、依函數(shù)定義,要檢驗(yàn)兩個給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):

         、 ;② 。

          5、設(shè)a, b是兩個實(shí)數(shù),且a

          (1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。

          (2)滿足不等式a

          (3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;

          分別滿足x≥a,x>a,x≤a,x

          其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。

          完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。

          例題解析

          題型一:函數(shù)的概念

          例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )

          練習(xí):設(shè)M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個。

          題型二:相同函數(shù)的判斷問題

          例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與

         、 與 其中表示同一函數(shù)的是( )

          A. ② ③ B. ② ④ C. ① ④ D. ④

          練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )

          A. 和 B. 和

          C. 和 D. 和

          題型三:函數(shù)的定義域和值域問題

          例3:求函數(shù)f(x)= 的定義域

          練習(xí):課本P33練習(xí)A組 4.

          例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。

          當(dāng)堂檢測

          1、下列各組函數(shù)中,表示同一個函數(shù)的是( A )

          A、 B、

          C、 D、

          2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )

          A、5 B、-5 C、6 D、-6

          3、給出下列四個命題:

          ① 函數(shù)就是兩個數(shù)集之間的對應(yīng)關(guān)系;

         、 若函數(shù)的定義域只含有一個元素,則值域也只含有一個元素;

          ③ 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);

         、 定義域和對應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.

          其中正確的有( B )

          A. 1 個 B. 2 個 C. 3個 D. 4 個

          4、下列函數(shù)完全相同的是 ( D )

          A. , B. ,

          C. , D. ,

          5、在下列四個圖形中,不能表示函數(shù)的圖象的是 ( B )

          6、設(shè) ,則 等于 ( D )

          A. B. C. 1 D.0

          7、已知函數(shù) ,求 的值.( )

        高一數(shù)學(xué)教案9

          一、教材分析

          1.教學(xué)內(nèi)容

          本節(jié)課內(nèi)容教材共分兩課時進(jìn)行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。

          2.教材的地位和作用

          函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的.一個基礎(chǔ)知識點(diǎn),是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。

          3.教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵

          教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念.

          教學(xué)難點(diǎn):領(lǐng)會函數(shù)單調(diào)性的實(shí)質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。

          教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過程.

          4.學(xué)情分析

          高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).

          二、目標(biāo)分析

          (一)知識目標(biāo):

          1.知識目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。

          2.能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗(yàn)和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強(qiáng)學(xué)生對知識的主動構(gòu)建的能力。

          3.情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會用運(yùn)動變化的觀點(diǎn)去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辨證唯物主義的思想教育。

          (二)過程與方法

          培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運(yùn)動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。

          三、教法與學(xué)法

          1.教學(xué)方法

          在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過程。

          2.學(xué)習(xí)方法

          自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。

          四、過程分析

          本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。

          (一)問題情景:

          為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)

          新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強(qiáng)化學(xué)生的感性認(rèn)識,從而達(dá)到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。

          (二)函數(shù)單調(diào)性的定義引入

          1.幾何畫板動畫演示,請學(xué)生認(rèn)真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認(rèn)識。,進(jìn)行比較,分析其變化趨勢。并探討、回答以下問題:

          問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?

          問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?

          通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:

          從在某一區(qū)間內(nèi)當(dāng)x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象?

          通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機(jī)結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。

          設(shè)計意圖:通過學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強(qiáng)學(xué)生自主學(xué)習(xí)、獨(dú)立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。通過學(xué)生已學(xué)過的一次y=2x+4,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認(rèn)識。從學(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認(rèn)識入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。

          (三)增函數(shù)、減函數(shù)的定義

          在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。

          定義中的“當(dāng)x1x2時,都有f(x1)

          注意:(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;

          (2)注意區(qū)間上所取兩點(diǎn)x1,x2的任意性;

          (3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。

          讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。

          設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實(shí)也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處理,同時也是讓學(xué)生感悟、體驗(yàn)學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。

          (四)例題分析

          在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。

          2.例2.證明函數(shù)在區(qū)間(-∞,+∞)上是減函數(shù)。

          在本題的解決過程中,要求學(xué)生對照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。

          變式一:函數(shù)f(x)=-3x+b在R上是減函數(shù)嗎?為什么?

          變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。

          變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。

          錯誤:實(shí)質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論

          例題設(shè)計意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強(qiáng)化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識,進(jìn)一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認(rèn)識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進(jìn)行觀察是一種常用而又粗略的方法。嚴(yán)格地說,它需要根據(jù)單調(diào)函數(shù)的定義進(jìn)行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結(jié)論,通過例2的解決是學(xué)生初步掌握運(yùn)用概念進(jìn)行簡單論證的基本方法,強(qiáng)化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進(jìn)一步強(qiáng)化解題的規(guī)范性,提高邏輯推理能力,同時讓學(xué)生學(xué)會一些常見的變形方法。

          (五)鞏固與探究

          1.教材p36練習(xí)2,3

          2.探究:二次函數(shù)的單調(diào)性有什么規(guī)律?

          (幾何畫板演示,學(xué)生探究)本問題作為機(jī)動題。時間不允許時,就為課后思考題。

          設(shè)計意圖:通過觀察圖象,對函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。

          通過課堂練習(xí)加深學(xué)生對概念的理解,進(jìn)一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達(dá)到鞏固,消化新知的目的。同時強(qiáng)化解題步驟,形成并提高解題能力。對練習(xí)的思考,讓學(xué)生學(xué)會反思、學(xué)會總結(jié)。

          (六)回顧總結(jié)

          通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識,同學(xué)們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進(jìn)行判斷和證明。

          設(shè)計意圖:通過小結(jié)突出本節(jié)課的重點(diǎn),并讓學(xué)生對所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,學(xué)會一些解決問題的思想與方法,體會數(shù)學(xué)的和諧美。

          (七)課外作業(yè)

          1.教材p43習(xí)題1.3A組1(單調(diào)區(qū)間),2(證明單調(diào)性);

          2.判斷并證明函數(shù)在上的單調(diào)性。

          3.數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識和方法。

          設(shè)計意圖:通過作業(yè)1、2進(jìn)一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強(qiáng)化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對本結(jié)內(nèi)容各項目標(biāo)落實(shí)的評價。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。

          (七)板書設(shè)計(見ppt)

          五、評價分析

          有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上,因此在教學(xué)設(shè)計過程中注意了:第一.教要按照學(xué)的法子來教;第二在學(xué)生已有知識結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”;第三.強(qiáng)化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——?dú)w納總結(jié)”的活動過程,體驗(yàn)了參與數(shù)學(xué)知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識和能力,成為積極主動的建構(gòu)者。

          本節(jié)課圍繞教學(xué)重點(diǎn),針對教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重數(shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。

        高一數(shù)學(xué)教案10

          1、教材(教學(xué)內(nèi)容)

          本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、

          2、設(shè)計理念

          本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運(yùn)動等具周期性規(guī)律運(yùn)動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、

          3、教學(xué)目標(biāo)

          知識與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會運(yùn)用這一定義,解決相關(guān)問題、

          過程與方法目標(biāo):體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、

          情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

          4、重點(diǎn)難點(diǎn)

          重點(diǎn):任意角三角函數(shù)的定義、

          難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

          5、學(xué)情分析

          學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、

          6、教法分析

          “問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習(xí)活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、

          7、學(xué)法分析

          本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)、

          8、教學(xué)設(shè)計(過程)

          一、引入

          問題1:我們已經(jīng)學(xué)過了任意角和弧度制,你對“角”這一概念印象最深的是什么?

          問題2:研究“任意角”這一概念時,我們引進(jìn)了平面直角坐標(biāo)系,對平面直角坐標(biāo)系,令你印象最深刻的是什么?

          問題3:當(dāng)角clipXimage002的終邊在繞頂點(diǎn)O轉(zhuǎn)動時,終邊上的一個點(diǎn)P(x,y)必定隨著終邊繞頂點(diǎn)O作圓周運(yùn)動,在這圓周運(yùn)動中,有哪些數(shù)量?圓周運(yùn)動的這些量之間的關(guān)系能用一個函數(shù)模型來刻畫嗎?

          二、原有認(rèn)知結(jié)構(gòu)的改造和重構(gòu)

          問題4:當(dāng)角clipXimage002[1]是銳角時,clipXimage004,線段OP的長度clipXimage006這幾個量之間有何關(guān)系?

          學(xué)生回答,分析結(jié)論,指出這種關(guān)系就是我們在初中學(xué)習(xí)過的銳角三角函數(shù)

          學(xué)生閱讀教材,并思考:

          問題5:銳角三角函數(shù)是我們高中意義上的函數(shù)嗎?如何利用函數(shù)的定義來理解它?

          學(xué)生討論并回答

          三、新概念的形成

          問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數(shù)的定義嗎?

          學(xué)生回答,并閱讀教材,得到任意角三角函數(shù)的定義、并思考:

          問題7:任意角三角函數(shù)的定義符合我們高中所學(xué)的函數(shù)定義嗎?

          展示任意角三角函數(shù)的定義,并指出它是如何刻劃圓周運(yùn)動的

          并類比函數(shù)的研究方法,得出任意角三角函數(shù)的定義域和值域。

          四、概念的運(yùn)用

          1、基礎(chǔ)練習(xí)

         、倏谒鉩lipXimage008的值、

         、诜謩e求clipXimage010的值

          小結(jié):ⅰ)畫終邊,求終邊與單位圓交點(diǎn)的坐標(biāo),算比值

         、)誘導(dǎo)公式(一)

          ③若clipXimage012,試寫出角clipXimage002[2]的值。

         、苋鬰lipXimage015,不求值,試判斷clipXimage017的符號

         、萑鬰lipXimage019,則clipXimage021為第象限的角、

          例1、已知角clipXimage002[3]的終邊過點(diǎn)clipXimage024,求clipXimage026之值

          若P點(diǎn)的坐標(biāo)變?yōu)閏lipXimage028,求clipXimage030的值

          小結(jié):任意角三角函數(shù)的等價定義(終邊定義法)

          例2、一物體A從點(diǎn)clipXimage032出發(fā),在單位圓上沿逆時針方向作勻速圓周運(yùn)動,若經(jīng)過的弧長為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標(biāo)。若該物體作圓周運(yùn)動的圓的半徑變?yōu)閏lipXimage006[1],如何用clipXimage034[2]來表示物體A所在位置的坐標(biāo)?

          小結(jié):可以采用三角函數(shù)模型來刻畫圓周運(yùn)動

          五、拓展探究

          問題8:當(dāng)角clipXimage002[4]的終邊繞頂點(diǎn)O作圓周運(yùn)動時,角clipXimage002[5]的終邊與單位圓的交點(diǎn)clipXimage039的坐標(biāo)clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數(shù)模型嗎?

          思考:引入平面直角坐標(biāo)系后,我們可以把圓周運(yùn)動用數(shù)來刻畫,這是將“形”轉(zhuǎn)化成為“數(shù)”;角clipXimage002[7]正弦值是一個數(shù),你能借助平面直角坐標(biāo)系和單位圓,用“形”來表示這個“數(shù)”嗎?角clipXimage002[8]余弦值、正切值呢?

          六、課堂小結(jié)

          問題9:請你談?wù)劚竟?jié)課的收獲有哪些?

          七、課后作業(yè)

          教材P21第6、7、8題

        高一數(shù)學(xué)教案11

          [教學(xué)重、難點(diǎn)]

          認(rèn)識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點(diǎn)。

          [教學(xué)準(zhǔn)備]

          學(xué)生、老師剪下附頁2中的圖2。

          [教學(xué)過程]

          一、畫一畫,說一說

          1、學(xué)生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。

          2、教師巡查練習(xí)情況。

          3、學(xué)生展示練習(xí),說一說為什么是銳角、直角、鈍角?

          二、分一分

          1、小組活動;把附頁2中的圖2中的三角形進(jìn)行分類,動手前先觀察這些三角形的特點(diǎn),然后小組討論怎樣分?

          2、匯報:分類的標(biāo)準(zhǔn)和方法?梢园唇莵矸,可以按邊來分。

          二、按角分類:

          1、觀察第一類三角形有什么共同的特點(diǎn),從而歸納出三個角都是銳角的'三角形是銳角三角形。

          2、觀察第二類三角形有什么共同的特點(diǎn),從而歸納出有一個角是直角的三角形是直角三角形

          3、觀察第三類三角形有什么共同的特點(diǎn),從而歸納出有一個角是鈍角的三角形是鈍角三角形。

          三、按邊分類:

          1、觀察這類三角形的邊有什么共同的特點(diǎn),引導(dǎo)學(xué)生發(fā)現(xiàn)每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。

          2、引導(dǎo)學(xué)生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?

          四、填一填:

          24、25頁讓學(xué)生辨認(rèn)各種三角形。

          五、練一練:

          第1題:通過“猜三角形游戲”讓學(xué)生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。

          第2題:在點(diǎn)子圖上畫三角形第3題:剪一剪。

          六、完成26頁實(shí)踐活動。

        高一數(shù)學(xué)教案12

          教學(xué)目標(biāo):

          (1)了解集合的表示方法;

          (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

          教學(xué)重點(diǎn):掌握集合的表示方法;

          教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒?

          教學(xué)過程:

          一、復(fù)習(xí)回顧:

          1.集合和元素的定義;元素的三個特性;元素與集合的關(guān)系;常用的數(shù)集及表示。

          2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系

          二、新課教學(xué)

          (一).集合的表示方法

          我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

          (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

          如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

          說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

          慮元素的順序。

          2.各個元素之間要用逗號隔開;

          3.元素不能重復(fù);

          4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;

          5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為

          例1.(課本例1)用列舉法表示下列集合:

          (1)小于10的所有自然數(shù)組成的集合;

          (2)方程x2=x的所有實(shí)數(shù)根組成的集合;

          (3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;

          (4)方程組 的解組成的集合。

          思考2:(課本P4的思考題)得出描述法的定義:

          (2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內(nèi)。

          具體方法:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

          一般格式:

          如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

          說明:

          1.課本P5最后一段話;

          2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。

          辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯誤的。

          例2.(課本例2)試分別用列舉法和描述法表示下列集合:

          (1)方程x2—2=0的所有實(shí)數(shù)根組成的集合;

          (2)由大于10小于20的所有整數(shù)組成的集合;

          (3)方程組 的解。

          思考3:(課本P6思考)

          說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

          (二).課堂練習(xí):

          1.課本P6練習(xí)2;

          2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)

          3.集合A={x| ∈Z,x∈N},則它的元素是 。

          4.已知集合A={x|-3

          歸納小結(jié):

          本節(jié)課從實(shí)例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

          作業(yè)布置:

          1. 習(xí)題1.1,第3.4題;

          2. 課后預(yù)習(xí)集合間的基本關(guān)系.

        高一數(shù)學(xué)教案13

          教學(xué)目標(biāo)

          1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路

          (1)分析,(2)建模,(3)求解,(4)檢驗(yàn);

          2、實(shí)際問題中的有關(guān)術(shù)語、名稱:

          (1)仰角與俯角:均是指視線與水平線所成的角;

          (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;

          (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

          3、用正弦余弦定理解實(shí)際問題的常見題型有:

          測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

          教學(xué)重難點(diǎn)

          1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路

          (1)分析,(2)建模,(3)求解,(4)檢驗(yàn);

          2、實(shí)際問題中的有關(guān)術(shù)語、名稱:

          (1)仰角與俯角:均是指視線與水平線所成的角;

          (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;

          (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

          3、用正弦余弦定理解實(shí)際問題的常見題型有:

          測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

          教學(xué)過程

          一、知識歸納

          1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路

          (1)分析,(2)建模,(3)求解,(4)檢驗(yàn);

          2、實(shí)際問題中的有關(guān)術(shù)語、名稱:

          (1)仰角與俯角:均是指視線與水平線所成的角;

          (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;

          (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

          3、用正弦余弦定理解實(shí)際問題的常見題型有:

          測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

          二、例題討論

          一)利用方向角構(gòu)造三角形

          四)測量角度問題

          例4、在一個特定時段內(nèi),以點(diǎn)E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個雷達(dá)觀測站A.某時刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東。

        高一數(shù)學(xué)教案14

          【教學(xué)目標(biāo)與解析】

          1、教學(xué)目標(biāo)

          (1)理解函數(shù)的概念;

          (2)了解區(qū)間的概念;

          2、目標(biāo)解析

          (1)理解函數(shù)的概念就是指能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

          (2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;

          【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

          【教學(xué)過程】

          問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

          1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

          1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

          設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。

          問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積S與之相對應(yīng)。

          問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時間的關(guān)系。

          設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

          問題4:上述三個實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?

          4.1在一個函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個集合分別叫什么名稱?

          4.2在從集合A到集合B的一個函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

          4.3一個函數(shù)由哪幾個部分組成?如果給定函數(shù)的定義域和對應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個函數(shù)相等的條件是什么?

        高一數(shù)學(xué)教案15

          一、教材分析

          函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

          本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

          二、重難點(diǎn)分析

          根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。

          三、學(xué)情分析

          1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

          2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

          四、目標(biāo)分析

          1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

          2、通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

          3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

          五、教法學(xué)法

          本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。

          學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

          高一必修二數(shù)學(xué)教案41、教材(教學(xué)內(nèi)容)

          本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、

          2、設(shè)計理念

          本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運(yùn)動等具周期性規(guī)律運(yùn)動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、

          3、教學(xué)目標(biāo)

          知識與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會運(yùn)用這一定義,解決相關(guān)問題、

          過程與方法目標(biāo):體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、

          情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

          4、重點(diǎn)難點(diǎn)

          重點(diǎn):任意角三角函數(shù)的定義、

          難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

          5、學(xué)情分析

          學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、

          6、教法分析

          “問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習(xí)活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、

          7、學(xué)法分析

          本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。

        【高一數(shù)學(xué)教案】相關(guān)文章:

        高一數(shù)學(xué)教案12-21

        高一數(shù)學(xué)教案06-20

        高一數(shù)學(xué)教案07-20

        高一必修五數(shù)學(xué)教案04-10

        高一必修四數(shù)學(xué)教案04-13

        人教版高一數(shù)學(xué)教案07-30

        上海高一數(shù)學(xué)教案07-30

        關(guān)于高一數(shù)學(xué)教案09-30

        人教版高一數(shù)學(xué)教案12-23

        高一數(shù)學(xué)教案設(shè)計04-10

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>