1. <rp id="zsypk"></rp>

      2. 高中數(shù)學(xué)說課稿

        時(shí)間:2022-06-09 08:12:04 數(shù)學(xué)說課稿 我要投稿

        高中數(shù)學(xué)說課稿15篇

          作為一位杰出的教職工,時(shí)常會需要準(zhǔn)備好說課稿,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。那么寫說課稿需要注意哪些問題呢?以下是小編收集整理的高中數(shù)學(xué)說課稿,希望對大家有所幫助。

        高中數(shù)學(xué)說課稿15篇

        高中數(shù)學(xué)說課稿1

          各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學(xué)法,教學(xué)程序,等幾個(gè)方面進(jìn)行我的說課。

          一,教材分析

          這部分我主要從3各方面闡述

          1, 教材的地位和作用

          《 》是北師大版必修?第?章第?節(jié)的內(nèi)容,在此之前,同學(xué)們已經(jīng)學(xué)習(xí)了、,這些對本節(jié)課的學(xué)習(xí)有一定的鋪墊作用,同是學(xué)好本節(jié)的內(nèi)容不僅加深前面所學(xué)習(xí)的知識,而且為后面我們將要學(xué)習(xí)的?知識打好基礎(chǔ),?所以說本節(jié)課的學(xué)習(xí)在整個(gè)高中數(shù)學(xué)學(xué)習(xí)過程中占有重要地位!

          2.根據(jù)教學(xué)大綱的規(guī)定,教學(xué)內(nèi)容的要求,教學(xué)對象的實(shí)情我確定了如下3維教學(xué)目標(biāo)(i)知識目標(biāo):

          II能力目標(biāo);初步培養(yǎng)學(xué)生歸納,抽象,概括的思維能力。

          訓(xùn)練學(xué)生認(rèn)識問題,分析問題,解決問題的能力

          III情感目標(biāo);通過學(xué)生的探索,史學(xué)生體會數(shù)學(xué)就在我們身邊,讓學(xué)生發(fā)現(xiàn)生活的數(shù)學(xué),培養(yǎng)不斷超越的創(chuàng)新品質(zhì),提高數(shù)學(xué)素養(yǎng)。

          3, 結(jié)合以上分析以及高一學(xué)生的人知水平我確定啦本節(jié)課的重難點(diǎn)

          教學(xué)重點(diǎn):

          教學(xué)難點(diǎn);

          二,教法

          教學(xué)方法是完成教學(xué)任務(wù)的手段,恰當(dāng)?shù)膶W(xué)者教學(xué)方法至關(guān)重要,根據(jù)本節(jié)課的教學(xué)內(nèi)容,考慮到高一學(xué)生已經(jīng)初步具有一定的探索能力,并喜歡挑戰(zhàn)問題的實(shí)際情況,為啦更有效的突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的知道思想。我主要采用 問題探究法 引導(dǎo)發(fā)現(xiàn)發(fā),案例教學(xué)法,講授法,在教學(xué)過程中精心設(shè)計(jì)帶有啟發(fā)性和思考性的問題,滿足學(xué)生探索的欲望,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,激發(fā)來自學(xué)生主體最有利的動力。并運(yùn)用多媒體課件的形式,更形象直觀,提高教學(xué)效果的同時(shí)加大啦課堂密度!

          學(xué)法

          根據(jù)學(xué)生的年齡特征,運(yùn)用訊息漸進(jìn),逐步升入,理論聯(lián)系實(shí)際的規(guī)律,讓學(xué)生從問題中質(zhì)疑,嘗試,歸納,總結(jié),運(yùn)用。培養(yǎng)學(xué)生發(fā)現(xiàn)問題,研究問題,分析問題的能力。自主參與知識的發(fā)生,發(fā)展,形成過程,完成從感性認(rèn)識 到理性思維的質(zhì)的飛躍,史學(xué)生在知識和能力方面都有所提高。

          三,教學(xué)程序

          1, 創(chuàng)設(shè)情境,提出問題

          讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,學(xué)生試著利用以前的知識經(jīng)驗(yàn),同化索引出當(dāng)前學(xué)習(xí)的新知識,激發(fā)學(xué)習(xí)的興趣和動機(jī)。

          2, 引導(dǎo)探究,直奔主題。(揭示概念)

          參用小組合作的方式,各小組派代表發(fā)表成果,教師作為教學(xué)的引導(dǎo)者,給予肯定的評價(jià),并給出一定的指導(dǎo),最后師生共同得出??!教師引導(dǎo)學(xué)生進(jìn)一步學(xué)習(xí)。整個(gè)過程充分突出學(xué)生的主體地位,培養(yǎng)學(xué)生合作探究的能力,激發(fā)興趣,更讓學(xué)生在思考學(xué)術(shù)問題以及解決數(shù)學(xué)問題的思想方法上有更深的交流。

          3, 自我嘗試,初步應(yīng)用

          在講解是,不僅在于怎樣接,更在于為什么這樣解,及時(shí)引導(dǎo)學(xué)生探究運(yùn)用知識,解決問題的方法,及時(shí)對解題方法和規(guī)律進(jìn)行概括,有利于培養(yǎng)學(xué)生的思維能力。 4 .當(dāng)堂訓(xùn)練,鞏固深化(反饋矯正)

          通過學(xué)生的主體參與,讓學(xué)生鞏固所學(xué)的知識,實(shí)現(xiàn)對知識再認(rèn)識的以及在數(shù)學(xué)解題思想方法層面上進(jìn)一步升華

          5,歸納小結(jié),回顧反思

          從知識,方法,經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。讓學(xué)生思考本節(jié)課學(xué)到啦那些知識,還有那些疑問。本節(jié)課最大的體驗(yàn)。本節(jié)課你學(xué)會那些技能。

          知識性的內(nèi)容小結(jié),可以把課堂教學(xué)傳授的知識盡快轉(zhuǎn)化為學(xué)生的素養(yǎng),數(shù)學(xué)思想發(fā)放的小結(jié),可以使學(xué)生更深刻地理解數(shù)學(xué)思想發(fā)放在解題中的地位和作用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

          ,6,變式延伸,布置作業(yè)

          必做題,對本屆課學(xué)生知識水平的反饋。選作題,對本節(jié)課知識內(nèi)容的延伸。使不同層次學(xué)生都可以收獲成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,讓每個(gè)學(xué)生在原有的基礎(chǔ)上有所發(fā)展。做到人人學(xué)數(shù)學(xué),人人學(xué)不同的數(shù)學(xué)。

          7板書設(shè)計(jì)

          力圖簡潔,形象,直觀,概括以便學(xué)生易于掌握。

          四,教學(xué)評價(jià)

          學(xué)生學(xué)習(xí)結(jié)果評價(jià)當(dāng)然重要,但是學(xué)習(xí)過程的評價(jià)更加重要。本節(jié)課中高度重視學(xué)生學(xué)習(xí)過程中的參與度,自信心,團(tuán)隊(duì)精神,合作意識,獨(dú)立思考習(xí)慣的養(yǎng)成。數(shù)學(xué)發(fā)現(xiàn)的能力,以及學(xué)習(xí)的興趣和成就感,,學(xué)生熟悉的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣,問題串的設(shè)計(jì)可以讓更多學(xué)生主動參與,師生對話可以實(shí)現(xiàn)師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學(xué)生感受到成功的喜悅?b密的思考可以培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣,讓學(xué)生在教室評價(jià),學(xué)生評價(jià)以及自我評價(jià)的過程中體驗(yàn)知識的積累,探索能力的長進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續(xù)發(fā)展打下基礎(chǔ),

          以上就是我的說課內(nèi)容。不當(dāng)之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦!

        高中數(shù)學(xué)說課稿2

          今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設(shè)計(jì)進(jìn)行說明。

          一、說教材

          1、本節(jié)在教材中的地位和作用:

          本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

          2. 教學(xué)目標(biāo)確定:

          (1)能力訓(xùn)練要求

         、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。

         、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

          (2)德育滲透目標(biāo)

         、倥囵B(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。

          ②提高學(xué)生對事物的感性認(rèn)識到理性認(rèn)識的能力。

          ③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。

          3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

          重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

          難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

          二、說教學(xué)方法和手段

          1、教法:

          “以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

          在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

          2、教學(xué)手段:

          根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。

          三、說學(xué)法:

          這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。

          四、 學(xué)程序:

          [復(fù)習(xí)引入新課]

          1.棱柱的性質(zhì):

         。1)側(cè)棱都相等,側(cè)面是平行四邊形

         。2)兩個(gè)底面與平行于底面的截面是全等的多邊形

         。3)過不相鄰的兩條側(cè)棱的截面是平行四邊形

          2.幾個(gè)重要的四棱柱:

          平行六面體、直平行六面體、長方體、正方體

          思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會是什么樣的體呢?

          [講授新課]

          1、棱錐的基本概念

         。1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對角面的概念

         。2).棱錐的表示方法、分類

          2、棱錐的性質(zhì)

          (1). 截面性質(zhì)定理:

          如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

          證明:(略)

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

          的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

          (2).正棱錐的定義及基本性質(zhì):

          正棱錐的定義:

          ①底面是正多邊形

         、陧旤c(diǎn)在底面的射影是底面的中心

          ①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

          ②棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;

          棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

          引申:

         、僬忮F的側(cè)棱與底面所成的角都相等;

         、谡忮F的側(cè)面與底面所成的二面角相等;

          (3)正棱錐的各元素間的關(guān)系

          下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來研究。

          引申:

         、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?

         。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

         、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請?jiān)囃ㄟ^三角形得出以上各元素間的關(guān)系式。

         。ㄕn后思考題)

          [例題分析]

          例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )

          A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

         。ù鸢福篋)

          例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

          ﹙解析及圖略﹚

          例3.已知正四棱錐的棱長和底面邊長均為a,求:

         。1)側(cè)面與底面所成角α的余弦(2)相鄰兩個(gè)側(cè)面所成角β的余弦

          ﹙解析及圖略﹚

          [課堂練習(xí)]

          1、 知一個(gè)正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

          ﹙解析及圖略﹚

          2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

          ﹙解析及圖略﹚

          [課堂小結(jié)]

          一:棱錐的基本概念及表示、分類

          二:棱錐的性質(zhì)

          截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

          2.正棱錐的定義及基本性質(zhì)

          正棱錐的定義:

         、俚酌媸钦噙呅

         、陧旤c(diǎn)在底面的射影是底面的中心

          (1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

          相等,它們叫做正棱錐的斜高;

          (2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

          引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

         、谡忮F的側(cè)面與底面所成的二面角相等;

         、壅忮F中各元素間的關(guān)系

          [課后作業(yè)]

          1:課本P52 習(xí)題9.8 : 2、 4

          2:課時(shí)訓(xùn)練:訓(xùn)練一

        高中數(shù)學(xué)說課稿3

          各位評委老師好:今天我說課的題目是

          是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過程,教學(xué)評價(jià)四個(gè)方面加以說明。

          一、 教材分析

          是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個(gè)

          高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

          根據(jù)新課標(biāo)要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標(biāo)

          1、 知識能力目標(biāo):使學(xué)生理解掌握

          2、 過程方法目標(biāo):通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力

          3、 情感態(tài)度價(jià)值觀目標(biāo):通過學(xué)習(xí)體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)善于

          觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度

          根據(jù)教學(xué)目標(biāo)、本節(jié)特點(diǎn)和學(xué)生實(shí)際情況本節(jié)重點(diǎn)是 ,由于學(xué)生對 缺少感性認(rèn)識,所以本節(jié)課的重點(diǎn)是

          二、教法學(xué)法

          根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來尋求解決問題的方法。

          三、 教學(xué)過程

          四、 教學(xué)程序及設(shè)想

          1、由……引入:

          把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

          對于本題:……

          2、由實(shí)例得出本課新的知識點(diǎn)是:……

          3、講解例題。

          我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

          4、能力訓(xùn)練。

          課后練習(xí)……

          使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。

          5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識。

          知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

          6、變式延伸,進(jìn)行重構(gòu)。

          重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

          五、教學(xué)評價(jià)

          學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價(jià),教師應(yīng)

          當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊(duì)精神合作意識數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。

        高中數(shù)學(xué)說課稿4

          一、本節(jié)資料的地位與重要性

          "分類計(jì)數(shù)原理與分步計(jì)數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特資料。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,經(jīng)過對這一節(jié)課的學(xué)習(xí),既能夠讓學(xué)生理解、理解分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。

          二、關(guān)于教學(xué)目標(biāo)的確定

          根據(jù)兩個(gè)基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:

          (1)使學(xué)生正確理解兩個(gè)基本原理的概念;

          (2)使學(xué)生能夠正確運(yùn)用兩個(gè)基本原理分析、解決一些簡單問題;

         。3)提高分析、解決問題的本事

         。4)使學(xué)生樹立"由個(gè)別到一般,由一般到個(gè)別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。

          三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

          中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計(jì)算公式都是以兩個(gè)計(jì)數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)資料。

          正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,應(yīng)對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯(cuò)誤的認(rèn)識,所以分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生理解概念并對如何運(yùn)用這兩個(gè)基本原理有正確清楚的認(rèn)識。教學(xué)中兩個(gè)基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。

          四、關(guān)于教學(xué)方法和教學(xué)手段的選用

          根據(jù)本節(jié)課的資料及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

          啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。貼合教學(xué)論中的自覺性和進(jìn)取性、鞏固性、可理解性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生經(jīng)過主動思考、動手操作來到達(dá)對知識的"發(fā)現(xiàn)"和理解,進(jìn)而完成知識的內(nèi)化,使書本的知識成為自我的知識。

          電腦多媒體以聲音、動畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,能夠?qū)⒔處煹乃悸泛筒呗砸攒浖男问絹眢w現(xiàn),更好地為教學(xué)服務(wù)。

          五、關(guān)于學(xué)法的指導(dǎo)

          "授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)本事,增強(qiáng)學(xué)生的綜合素質(zhì),從而到達(dá)教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,經(jīng)過教師的啟發(fā)點(diǎn)撥,類比推理,在進(jìn)取的雙邊活動中,學(xué)生找到了解決疑難的方法。整個(gè)過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個(gè)環(huán)節(jié),學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)本事。

          六、關(guān)于教學(xué)程序的設(shè)計(jì)

         。ㄒ唬┱n題導(dǎo)入

          這是本章的第一節(jié)課,是起始課,講起始課時(shí),把這一學(xué)科的資料作一個(gè)大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個(gè)初步的了解,并為下頭的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計(jì)數(shù)方法是本章資料的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章資料的重要性。同時(shí)板書課題(分類計(jì)數(shù)原理與分步計(jì)數(shù)原理)

          這樣做,能使學(xué)生明白本節(jié)資料的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。

         。ǘ┬抡n講授

          經(jīng)過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨(dú)立地把從甲地到乙地這件事辦好。

          緊跟著給出:

          引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不一樣的走法?

          引伸2:若完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?

          這個(gè)問題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生理解分類計(jì)數(shù)原理做好了準(zhǔn)備。

          板書分類計(jì)數(shù)原理資料:

          完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)

          此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計(jì)數(shù)原理資料,啟發(fā)總結(jié)得下頭三點(diǎn)注意:(出示幻燈片)

          (1)各分類之間相互獨(dú)立,都能完成這件事;

         。2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;

          (3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。

          這樣做加深學(xué)生對分類計(jì)數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

          接下來給出問題2:(出示幻燈片)

          由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不一樣的走法?

          提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個(gè)問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個(gè)步驟才能完成從甲地到乙地這件事。

          問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不一樣的顏色閃現(xiàn)出六種不一樣的走法,讓學(xué)生列式求出不一樣走法數(shù),并列舉所有走法。

          歸納得出:分步計(jì)數(shù)原理(板書原理資料)

          分步計(jì)數(shù)原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有

          N=m1×m2×…×mn

          種不一樣的方法。

          同樣趁學(xué)生對定理有必須的認(rèn)識,引導(dǎo)學(xué)生分析分步計(jì)數(shù)原理資料,啟發(fā)總結(jié)得下頭三點(diǎn)注意:(出示幻燈片)

         。1)各步驟相互依存,僅有各個(gè)步驟完成了,這件事才算完成;

         。2)根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;

          (3)分步時(shí)要注意滿足完成一件事必須并且只需連續(xù)完成這N個(gè)步驟這件事才算完成。

          (三)應(yīng)用舉例

          教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。

          例2:由數(shù)字0,1,2,3,4能夠組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個(gè)問題:

          (1)每一個(gè)三位數(shù)是由什么構(gòu)成的?(三個(gè)整數(shù)字)

         。2)023是一個(gè)三位數(shù)嗎?(百位上不能是0)

         。3)組成一個(gè)三位數(shù)需要怎樣做?(分成三個(gè)步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個(gè)位上的數(shù)字)

          (4)怎樣表述?

          教師巡視指導(dǎo)、并歸納

          解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法。根據(jù)分步計(jì)數(shù)原理,得到能夠組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.

          答:能夠組成100個(gè)三位整數(shù)。

          (教師的連續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫忙學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問題本事有所提高。

          教師在第二個(gè)例題中給出板書示范,能幫忙學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的研究,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的構(gòu)成有著進(jìn)取的促進(jìn)作用,也能夠?yàn)閷W(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ))

         。ㄋ模w納小結(jié)

          師:什么時(shí)候用分類計(jì)數(shù)原理、什么時(shí)候用分步計(jì)數(shù)原理呢?

          生:分類時(shí)用分類計(jì)數(shù)原理,分步時(shí)用分步計(jì)數(shù)原理。

          師:應(yīng)用兩個(gè)基本原理時(shí)需要注意什么呢?

          生:分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的。

         。ㄎ澹┱n堂練習(xí)

          P222:練習(xí)1~4.學(xué)生板演第4題

          (對于題4,教師有必要對三個(gè)多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)

         。┎贾米鳂I(yè)

          P222:練習(xí)5,6,7.

          補(bǔ)充題:

          1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?

         。ㄌ崾荆喊词簧蠑(shù)字的大小能夠分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))

          2.某學(xué)生填報(bào)高考志愿,有m個(gè)不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不一樣的志愿,求該生填寫志愿的方式的種數(shù)。

         。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫方式)

          3.在所有的三位數(shù)中,有且僅有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?

         。ㄌ崾荆耗軌蛴孟骂^方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)僅有兩個(gè)數(shù)字相同的三位數(shù))

          4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個(gè)會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不一樣的選法?

         。ㄌ崾荆河捎8+5=13》10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

          只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自我夢想的成績。

        高中數(shù)學(xué)說課稿5

          大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。

          一 教材分析

          本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

          根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

          認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

          能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

          情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

        教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。

          二 教法

          根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)

          三 學(xué)法:

          指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

          四 教學(xué)過程

          第一:創(chuàng)設(shè)情景,大概用2分鐘

          第二:實(shí)踐探究,形成概念,大約用25分鐘

          第三:應(yīng)用概念,拓展反思,大約用13分鐘

         。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

          “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

          (二)探尋特例,提出猜想

          1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

          3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對的邊滿足關(guān)系

          這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

         。ㄈ┻壿嬐评,證明猜想

          1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

          (四)歸納總結(jié),簡單應(yīng)用

          1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

          2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

          3.運(yùn)用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

          (五)講解例題,鞏固定理

          1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

          例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

        高中數(shù)學(xué)說課稿6

          一、教材分析:

          1、教材的地位與作用:

          線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實(shí)際問題的能力。

          2、教學(xué)重點(diǎn)與難點(diǎn):

          重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

          難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

          二、目標(biāo)分析:

          在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。

          知識目標(biāo):

          1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行

          域和最優(yōu)解等概念;

          2、理解線性規(guī)劃問題的圖解法;

          3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

          能力目標(biāo):

          1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

          2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

          3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

          情感目標(biāo):

          1、讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

          2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

          3、讓學(xué)生學(xué)會用運(yùn)動觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。

          三、過程分析:

          數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個(gè)教學(xué)過程分為以下六個(gè)教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運(yùn)用新知,解決問題;6、歸納總結(jié),鞏固提高。

          1、創(chuàng)設(shè)情境,提出問題:

          在課堂教學(xué)的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運(yùn)輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財(cái)富,還被列為20世紀(jì)對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。

        高中數(shù)學(xué)說課稿7

          一、教材地位與作用

          本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。

          二、學(xué)情分析

          作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。

          根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)

          教學(xué)目標(biāo)分析:

          知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

          能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

          情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

          三、教法學(xué)法分析

          教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

          學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

          四、教學(xué)過程

          (一)創(chuàng)設(shè)情境,布疑激趣

          “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

          (二)探尋特例,提出猜想

          1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

          3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對的邊滿足關(guān)系

          這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

          (三)邏輯推理,證明猜想

          1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。

          (四)歸納總結(jié),簡單應(yīng)用

          1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

          2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

          3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

          (五)講解例題,鞏固定理

          1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

          例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

          (六)課堂練習(xí),提高鞏固

          1.在△ABC中,已知下列條件,解三角形。

          (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

          2.在△ABC中,已知下列條件,解三角形。

          (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

          學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

          (七)小結(jié)反思,提高認(rèn)識

          通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

          1.用向量證明了正弦定

          理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          2.它表述了三角形的邊與對角的正弦值的關(guān)系。

          3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

          (從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

          (八)任務(wù)后延,自主探究

          如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

        高中數(shù)學(xué)說課稿8

          大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。

          一、教材分析

          本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

          根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

          認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運(yùn)用正弦定理解決兩類基本的解三角形問題。

          能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

          情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。

          二、教法

          根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

          三、學(xué)法

          指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

          四、教學(xué)過程

          (一)創(chuàng)設(shè)情境(3分鐘)

          “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

          (二)猜想—推理—證明(15分鐘)

          激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

          在三角形中,角與所對的邊滿足關(guān)系

          注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          (三)總結(jié)--應(yīng)用(3分鐘)

          1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

          2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

          (四)講解例題(8分鐘)

          1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

          例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

          一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

          (五)課堂練習(xí)(8分鐘)

          1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

          2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

          學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

          (六)小結(jié)反思(3分鐘)

          1.它表述了三角形的邊與對角的正弦值的關(guān)系。

          2.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

          3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

          五、教學(xué)反思

          從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。

        高中數(shù)學(xué)說課稿9

          一、教學(xué)目標(biāo)

         。1)知識與能力目標(biāo):學(xué)習(xí)橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推

          導(dǎo)過程;能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程。

          (2)過程與方法目標(biāo):通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探

          索能力;通過對橢圓標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,提高學(xué)生運(yùn)用坐標(biāo)法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想方法。

          (3)情感、態(tài)度與價(jià)值觀目標(biāo):通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識,培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認(rèn)識論。

          二、教學(xué)重點(diǎn)、難點(diǎn)

         。1)教學(xué)重點(diǎn):橢圓的定義及橢圓標(biāo)準(zhǔn)方程,用待定系數(shù)法和定義法求曲線方程。

         。2)教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。

          三、教學(xué)過程

          (一)創(chuàng)設(shè)情境,引入概念

          1、動畫演示,描繪出橢圓軌跡圖形。

          2、實(shí)驗(yàn)演示。

          思考:橢圓是滿足什么條件的點(diǎn)的軌跡呢?

          (二)實(shí)驗(yàn)探究,形成概念

          1、動手實(shí)驗(yàn):學(xué)生分組動手畫出橢圓。

          實(shí)驗(yàn)探究:

          保持繩長不變,改變兩個(gè)圖釘之間的距離,畫出的橢圓有什么變化?

          思考:根據(jù)上面探究實(shí)踐回答,橢圓是滿足什么條件的點(diǎn)的軌跡?

          2、概括橢圓定義

          引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個(gè)定點(diǎn)距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫橢圓。

          教師指出:這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。

          思考:焦點(diǎn)為的橢圓上任一點(diǎn)M,有什么性質(zhì)?

          令橢圓上任一點(diǎn)M,則有

          (三)研討探究,推導(dǎo)方程

          1、知識回顧:利用坐標(biāo)法求曲線方程的一般方法和步驟是什么?

          2、研討探究

          問題:如圖已知焦點(diǎn)為的橢圓,且=2c,對橢圓上任一點(diǎn)M,有

          ,嘗試推導(dǎo)橢圓的方程。

          思考:如何建立坐標(biāo)系,使求出的方程更為簡單?

          將各組學(xué)生的討論方案歸納起來評議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點(diǎn)、列式、化簡。

          方案一方案二

          按方案一建立坐標(biāo)系,師生研討探究得到橢圓標(biāo)準(zhǔn)方程

          =1(),其中b2=a2-c2(b>0);

          選定方案二建立坐標(biāo)系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。

          教師指出:我們所得的兩個(gè)方程=1和=1()都是橢圓的標(biāo)準(zhǔn)方程。

          (四)歸納概括,方程特征

          1、觀察橢圓圖形及其標(biāo)準(zhǔn)方程,師生共同總結(jié)歸納

         。1)橢圓標(biāo)準(zhǔn)方程對應(yīng)的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標(biāo)軸;

         。2)橢圓標(biāo)準(zhǔn)方程形式:左邊是兩個(gè)分式的平方和,右邊是1;

         。3)橢圓標(biāo)準(zhǔn)方程中三個(gè)參數(shù)a,b,c關(guān)系:;

         。4)橢圓焦點(diǎn)的位置由標(biāo)準(zhǔn)方程中分母的大小確定;

         。5)求橢圓標(biāo)準(zhǔn)方程時(shí),可運(yùn)用待定系數(shù)法求出a,b的值。

          2、在歸納總結(jié)的基礎(chǔ)上,填下表

          標(biāo)準(zhǔn)方程

          圖形a,b,c關(guān)系焦點(diǎn)坐標(biāo)焦點(diǎn)位置

          在x軸上

          在y軸上

          (五)例題研討,變式精析

          例1、求適合下列條件的橢圓的標(biāo)準(zhǔn)方程

          (1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是,橢圓上一點(diǎn)P到兩焦點(diǎn)距離和等于10。

         。2)兩焦點(diǎn)坐標(biāo)分別是,并且橢圓經(jīng)過點(diǎn)。

          例2、(1)若橢圓標(biāo)準(zhǔn)方程為及焦點(diǎn)坐標(biāo)。

          (2)若橢圓經(jīng)過兩點(diǎn)求橢圓標(biāo)準(zhǔn)方程。

         。3)若橢圓的一個(gè)焦點(diǎn)是,則k的值為。

          (A)(B)8(C)(D)32

          例3、如圖,已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線段,求線段中點(diǎn)M的軌跡。

          (六)變式訓(xùn)練,探索創(chuàng)新

          1、寫出適合下列條件的橢圓標(biāo)準(zhǔn)方程

         。1),焦點(diǎn)在x軸上;

          (2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過點(diǎn)P;

          2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。

          3、已知B,C是兩個(gè)定點(diǎn),周長為16,求頂點(diǎn)A的軌跡方程。

          4、已知橢圓的焦距相等,求實(shí)數(shù)m的值。

          5、在橢圓上上求一點(diǎn),使它與兩個(gè)焦點(diǎn)連線互相垂直。

          6、已知P是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。

          (七)小結(jié)歸納,提高認(rèn)識

          師生共同歸納本節(jié)所學(xué)內(nèi)容、知識規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。

          (八)作業(yè)訓(xùn)練,鞏固提高

          課本第96頁習(xí)題§8。1第3題、第5題、第6題。

          課后思考題:

          1、知是橢圓的兩個(gè)焦點(diǎn),AB是過的弦,則周長是。

         。ˋ)2a(B)4a(C)8a(D)2a2b

          2、的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是邊AC,BC所在直線的斜

          率之積等于,求頂點(diǎn)C的軌跡方程。

          2、與圓外切,同時(shí)與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?

          教學(xué)設(shè)計(jì)說明

          橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標(biāo)法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標(biāo)法求曲線方程的很好應(yīng)用實(shí)例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計(jì)的始終。

          橢圓是生活中常見的圖形,通過實(shí)驗(yàn)演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。

          橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標(biāo)準(zhǔn)方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨(dú)立主動獲取知識的能力。

          設(shè)計(jì)例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運(yùn)用橢圓的知識解決問題,同時(shí)也是為了更好地調(diào)動、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新能力,同時(shí)培養(yǎng)學(xué)生大膽實(shí)踐、勇于探索的精神,開闊學(xué)生知識應(yīng)用視野。

        高中數(shù)學(xué)說課稿10

          一、教材分析

          本節(jié)知識是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。

          根據(jù)上述教材資料分析,研究到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

          認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

          本事目標(biāo):引導(dǎo)學(xué)生經(jīng)過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維本事,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

          情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和進(jìn)取性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

          教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)確定解的個(gè)數(shù)。

          二、教法

          根據(jù)教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的本事線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過例題和練習(xí)來突破難點(diǎn)

          三、學(xué)法:

          指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、團(tuán)體等多種解難釋疑的嘗試活動,將自我所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維本事,構(gòu)成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

          四、教學(xué)過程

          第一:創(chuàng)設(shè)情景,大概用2分鐘

          第二:實(shí)踐探究,構(gòu)成概念,大約用25分鐘

          第三:應(yīng)用概念,拓展反思,大約用13分鐘

         。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

          “興趣是最好的教師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今日的學(xué)習(xí)課題。

         。ǘ┨綄ぬ乩岢霾孪

          1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

          3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對的邊滿足關(guān)系

          這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

          (三)邏輯推理,證明猜想

          1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2.鼓勵(lì)學(xué)生經(jīng)過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

         。ㄋ模w納總結(jié),簡單應(yīng)用

          1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

          2.正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問題。

          3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自我參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。

          (五)講解例題,鞏固定理

          1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

          例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

          (六)課堂練習(xí),提高鞏固

          1.在△ABC中,已知下列條件,解三角形.

          (1)A=45°,C=30°,c=10cm

          (2)A=60°,B=45°,c=20cm

          2.在△ABC中,已知下列條件,解三角形.

          (1)a=20cm,b=11cm,B=30°

          (2)c=54cm,b=39cm,C=115°

          學(xué)生板演,教師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

         。ㄆ撸┬〗Y(jié)反思,提高認(rèn)識

          經(jīng)過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

          1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          2.它表述了三角形的邊與對角的正弦值的關(guān)系。

          3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

         。◤膶(shí)際問題出發(fā),經(jīng)過猜想、實(shí)驗(yàn)、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生進(jìn)取性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

         。ò耍┤蝿(wù)后延,自主探究

          如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。

        高中數(shù)學(xué)說課稿11

          一、說教材:

          1、地位、作用和特點(diǎn):

          《 》是高中數(shù)學(xué)課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。

          本節(jié)是在學(xué)習(xí)了 之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí) 打下基礎(chǔ),所以

          是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究 有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是;

          特點(diǎn)之二是: 。

          教學(xué)目標(biāo):

          根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

         。1)知識目標(biāo):A、B、C

         。2)能力目標(biāo):A、B、C

          (3)德育目標(biāo):A、B

          教學(xué)的重點(diǎn)和難點(diǎn):

         。1)教學(xué)重點(diǎn):

          (2)教學(xué)難點(diǎn):

          二、說教法:

          基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

          導(dǎo)入新課 新課教學(xué)

          反饋發(fā)展

          三、說學(xué)法:

          學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

          1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

          本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出 ,并依

          據(jù)此知識與具體事例結(jié)合、推導(dǎo)出 ,這正是一個(gè)分析和推理的全過程。

          2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授 時(shí),可通過

          演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

          3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實(shí)踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

          4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

          四、教學(xué)過程:

         。ㄒ唬、課題引入:

          教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。C、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

         。ǘ、新課教學(xué):

          1、針對上面提出的問題,設(shè)計(jì)學(xué)生動手實(shí)踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

          2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上最好是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

         。ㄈ、實(shí)施反饋:

          1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

          2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

          五、板書設(shè)計(jì):

          在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。

          六、說課綜述:

          以上是我對《 》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的 知識,并把它運(yùn)用到對

          的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。

          總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

        高中數(shù)學(xué)說課稿12

          一、教材分析

          1· 教材的地位和作用

          在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識是學(xué)習(xí)函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。

          y=asin(ωx+φ)圖象變換的學(xué)習(xí)有助于學(xué)生進(jìn)一步理解正弦函數(shù)的圖象和性質(zhì),加深學(xué)生對函數(shù)圖象變換的理解和認(rèn)識,加深數(shù)形結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識。同時(shí)為相關(guān)學(xué)科的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。

         、步滩牡闹攸c(diǎn)和難點(diǎn)

          重點(diǎn)是對周期變換、相位變換規(guī)律的理解和應(yīng)用。

          難點(diǎn)是對周期變換、相位變換先后順序的調(diào)整,對圖象變換的影響。

          ⒊教材內(nèi)容的安排和處理

          函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計(jì)劃用3課時(shí),本節(jié)是第2課時(shí),主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。

          二、目的分析

          ⒈知識目標(biāo)

          掌握相位變換、周期變換的變換規(guī)律。

         、材芰δ繕(biāo)

          培養(yǎng)學(xué)生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。

          ⒊德育目標(biāo)

          在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。

         、辞楦心繕(biāo)

          通過學(xué)數(shù)學(xué),用數(shù)學(xué),進(jìn)而培養(yǎng)學(xué)生對數(shù)學(xué)的`興趣。

          三、教具使用

          ①本課安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計(jì)算機(jī),所有的計(jì)算機(jī)由一套多媒體演示控制系統(tǒng)連接,以實(shí)現(xiàn)師生、生生的相互溝通。

         、谡n前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學(xué)生電腦。

          四、教法、學(xué)法分析

          本節(jié)課以“探究——?dú)w納——應(yīng)用”為主線,通過設(shè)置問題情境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問題。

          以學(xué)生的自主探究為主要方式,把計(jì)算機(jī)使用的主動權(quán)交給學(xué)生,讓學(xué)生主動去學(xué)習(xí)新知、探究未知,在活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能數(shù)學(xué)地提出問題、解決問題。

          五、教學(xué)過程

          教學(xué)過程設(shè)計(jì):

          預(yù)備知識

          一、問題探究

         、艓熒献魈骄恐芷谧儞Q

          ⑵學(xué)生自主探究相位變換

          二、歸納概括

          三、實(shí)踐應(yīng)用

          教學(xué)程序

          設(shè)計(jì)說明

          〖預(yù)備知識

          1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?

          2這些變換的規(guī)律是什么?

          幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識,為后面的學(xué)習(xí)作鋪墊。促使學(xué)生學(xué)會對知識的歸納梳理。

          〖問題探究

         。ㄒ唬⿴熒献魈骄恐芷谧儞Q

          (1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin

          x圖象的變換過程,指出變換過程中圖象上每一個(gè)點(diǎn)的坐標(biāo)發(fā)生了什么變化。

          (2) 在上述變換過程中,橫坐標(biāo)的伸長和縮短與ω之間存在怎樣的關(guān)系?

         。ǘ⿲W(xué)生自主探究相位變換

          (1)我們初中學(xué)過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?

          (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗(yàn)證。

          設(shè)計(jì)這個(gè)問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。

          設(shè)計(jì)這個(gè)問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。

          師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。

          〖?xì)w納概括

          通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?

          設(shè)計(jì)這個(gè)環(huán)節(jié)的意圖是通過對上述變換過程的探究,進(jìn)而引導(dǎo)學(xué)生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。

          〖實(shí)踐應(yīng)用

          (一)應(yīng)用舉例

          (1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內(nèi)的簡圖。

          (2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換

          (3)請動手驗(yàn)證上述方法,把幾何畫板所得圖象與用五點(diǎn)法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯(cuò)誤的。

          (4)歸納總結(jié)

          從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應(yīng)該是_____.

          (二)分層訓(xùn)練

          a組題(基礎(chǔ)題)

          如何完成下列圖象的變換:

         、賧=sin3x→y=sin(3x+1)

          ②y=sin(x+1) →y=sin(3x+1)

          b組題(中等題)

          如何完成下列圖象的變換:

         、賧=sin3x→y=sin(3x+1)

         、趛=sin(x+1) →y=sin(3x+1)

         、踶=sinx →y=sin(3x+1)

          c組題(拓展題)

         、偃绾瓮瓿上铝袌D象的變換:

          y=sinx →y=sin(3x+1)

         、谖覀冎溃瑥膄(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實(shí)例加以驗(yàn)證。

          讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗(yàn)證變換方法是否正確。

          給出這個(gè)問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問題。

          這個(gè)步驟主要目的是培養(yǎng)學(xué)生的探究能力和動手能力。

          這個(gè)問題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過問題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應(yīng)特別關(guān)注x的變化量。

          a組題重在基礎(chǔ)知識的掌握,

          由基礎(chǔ)較薄弱的同學(xué)完成。

          b組比a組增加了第③小題,

          重在對兩種變換的綜合應(yīng)用。

          c組除了考查知識的綜合應(yīng)用,

          還要求學(xué)生對新問題進(jìn)行探究,

          有較大難度,適合基礎(chǔ)較好的

          同學(xué)完成。

          作業(yè):

         。1)必做題

         。2)選做題

          作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

          六、評價(jià)分析

          在本節(jié)的教與學(xué)活動中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。

          調(diào)節(jié)與反饋:

          ⑴驗(yàn)證兩種變換的綜合時(shí),可能會出現(xiàn)有些學(xué)生無法觀察到兩種變換的區(qū)別這種情況,此時(shí),教師除了加以引導(dǎo)外,還需通過教師演示和詳細(xì)講解加以解決。

          ⑵教學(xué)中可能出現(xiàn)個(gè)別學(xué)生無法正確操作課件的情況,這種情況下一定要強(qiáng)調(diào)學(xué)生的協(xié)作意識。

          附:板書設(shè)計(jì)

        高中數(shù)學(xué)說課稿13

          尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書數(shù)學(xué)必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時(shí)3.2.1直線的點(diǎn)斜式方程的內(nèi)容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過程及教學(xué)特點(diǎn)等四個(gè)方面具體說明。

          一、教學(xué)背景的分析

          1.教材分析

          直線的方程是學(xué)生在初中學(xué)習(xí)了一次函數(shù)的概念和圖象及高中學(xué)習(xí)了直線的斜率后進(jìn)行研究的。直線的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究解析幾何學(xué)的開始,對后續(xù)研究兩條直線的位置關(guān)系、圓的方程、直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內(nèi)容之一!爸本的點(diǎn)斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過。直線作為常見的最簡單的曲線,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。同時(shí)在這一節(jié)中利用坐標(biāo)法來研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想將貫穿于我們整個(gè)高中數(shù)學(xué)教學(xué)。

          2.學(xué)情分析

          我校的生源較差,學(xué)生的基礎(chǔ)和學(xué)習(xí)習(xí)慣都有待加強(qiáng)。又由于剛開始學(xué)習(xí)解析幾何,第一次用坐標(biāo)法來求曲線的方程,在學(xué)習(xí)過程中,會出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學(xué)生在探究問題的能力,合作交流的意識等方面更有待加強(qiáng)。

          根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3.教學(xué)目標(biāo)

          (1)了解直線的方程的概念和直線的點(diǎn)斜式方程的推導(dǎo)過程及方法;

          (2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會準(zhǔn)確地使用直線的點(diǎn)斜式、斜截式方程 ;

          (3)從實(shí)例入手,通過類比、推廣、特殊化等,使學(xué)生體會從特殊到一般再到特殊的認(rèn)知規(guī)律;

          (4)提倡學(xué)生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數(shù)的關(guān)系等活動,培養(yǎng)學(xué)生主動探究知識、合作交流的意識,并初步了解數(shù)形結(jié)合在解析幾何中的應(yīng)用。

          4. 教學(xué)重點(diǎn)與難點(diǎn)

          (1)重點(diǎn): 直線點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應(yīng)用。

          (2)難點(diǎn):直線的方程的概念,點(diǎn)斜式方程的推導(dǎo)及點(diǎn)斜式、斜截式方程的應(yīng)用。

          二、教法學(xué)法分析

          1.教法分析:根據(jù)學(xué)情,為了能調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“實(shí)例引導(dǎo)的啟發(fā)式”問題教學(xué)法。幫助學(xué)生將幾何問題代數(shù)化,用代數(shù)的語言描述直線的幾何要素及其關(guān)系,進(jìn)而將直線的問題轉(zhuǎn)化為直線方程的問題,通過對直線的方程的研究,最終解決有關(guān)直線的一些簡單的問題。另外可以恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。

          2.學(xué)法分析:學(xué)生從問題中嘗試、總結(jié)、質(zhì)疑、運(yùn)用,體會學(xué)習(xí)數(shù)學(xué)的樂趣;通過推導(dǎo)直線的點(diǎn)斜式方程的學(xué)習(xí),要了解用坐標(biāo)法求方程的思想;通過一個(gè)點(diǎn)和方向可以確定一條直線,進(jìn)而可求出直線的點(diǎn)斜式方程,要能體會“形”與“數(shù)”的轉(zhuǎn)化思想。

          下面我就對具體的教學(xué)過程和設(shè)計(jì)加以說明:

          三、教學(xué)過程的設(shè)計(jì)及實(shí)施

          整個(gè)教學(xué)過程是由六個(gè)問題組成,共分為四個(gè)環(huán)節(jié),學(xué)習(xí)或涉及四個(gè)概念:

          溫故知新,澄清概念----直線的方程

          深入探究,獲得新知--------點(diǎn)斜式

          拓展知識,再獲新知--------斜截式

          小結(jié)引申,思維延續(xù)--------兩點(diǎn)式

          平面上的點(diǎn)可以用坐標(biāo)表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學(xué)習(xí)的內(nèi)容。

          (一)溫故知新,澄清概念----直線的方程

          問題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標(biāo)有何關(guān)系?

          [學(xué)生活動] 通過動手畫圖,思考并嘗試用語言進(jìn)行初步的表述。

          [教師活動] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規(guī)范的語言對方程和直線的方程進(jìn)行描述。

          [設(shè)計(jì)意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線的方程的概念,試圖做到“用學(xué)生已有的數(shù)學(xué)知識去學(xué)數(shù)學(xué)”,從而突破難點(diǎn)。通過對這個(gè)問題的研究,一方面認(rèn)識到以方程的解為坐標(biāo)的點(diǎn)在直線上,另一方面認(rèn)識到直線上的點(diǎn)的坐標(biāo)滿足方程;從而使同學(xué)意識到直線可以由直線上任意一點(diǎn)P(x,y)的坐標(biāo)x和y之間的等量關(guān)系來表示。

          問題二:若直線經(jīng)過點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線l上。

          (1) 若點(diǎn)P在直線l上從A點(diǎn)開始運(yùn)動,橫坐標(biāo)增加1時(shí),點(diǎn)P的坐標(biāo)是 ;

          (2)畫出直線l,你能求出直線l的方程嗎?

          (3)若點(diǎn)P在直線l上運(yùn)動,設(shè)P點(diǎn)的坐標(biāo)為(x,y),你會有什么方法找到x,y滿足的關(guān)系式?

          [學(xué)生活動]學(xué)生獨(dú)立思考5分鐘,必要的話可進(jìn)行分組討論、合作交流。

          [教師活動]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導(dǎo)學(xué)生觀察發(fā)現(xiàn),得到當(dāng)點(diǎn)P在直線l上運(yùn)動時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

          [設(shè)計(jì)意圖]復(fù)習(xí)斜率公式;待定系數(shù)法;初步體會坐標(biāo)法。同時(shí)引導(dǎo)學(xué)生注意為什么要把分式化簡?(若不化簡,就少一點(diǎn)),感受數(shù)學(xué)簡潔的美感和嚴(yán)謹(jǐn)性。還要指出這樣的事實(shí):當(dāng)點(diǎn)P在直線l上運(yùn)動時(shí),P的坐標(biāo)(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標(biāo)的點(diǎn)在直線l上。把學(xué)生的思維引到用坐標(biāo)法研究直線的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。

          (二)深入探究,獲得新知----點(diǎn)斜式

          問題三: ① 若直線l經(jīng)過點(diǎn)P0(x0,y0),且斜率為k,求直線l的方程。

          ②直線的點(diǎn)斜式方程能否表示經(jīng)過P0(x0,y0)的所有直線?

          [學(xué)生活動] ①學(xué)生敘述,老師板書,強(qiáng)調(diào)斜率公式與點(diǎn)斜式的區(qū)別。 ②指導(dǎo)學(xué)生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當(dāng)直線l的傾斜角α=90°時(shí),斜率k不存在,當(dāng)然不存在點(diǎn)斜式方程;討論k=0的情況;觀察并總結(jié)點(diǎn)斜式方程的特征。

          [設(shè)計(jì)意圖] 由特殊到一般的學(xué)習(xí)思路,突破難點(diǎn),培養(yǎng)學(xué)生的歸納概括能力。通過對這個(gè)問題的探究使學(xué)生獲得直線點(diǎn)斜式方程;由②知:當(dāng)直線斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線,培養(yǎng)思維的嚴(yán)謹(jǐn)性,這時(shí)直線l與y軸平行,它上面的每一點(diǎn)的橫坐標(biāo)都等于x0,直線l的方程是:x=x0;通過學(xué)生的觀察討論總結(jié),明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過下面的例題和基礎(chǔ)練習(xí),突破重難點(diǎn)。

          問題四:分別求經(jīng)過點(diǎn)且滿足下列條件的直線的方程

          (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

          [練習(xí)]P95.1、2。

          [學(xué)生活動]學(xué)生獨(dú)立完成并展示或敘述,老師點(diǎn)評。

          [設(shè)計(jì)意圖]充分用好教材的例題和習(xí)題,因?yàn)檫@些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節(jié)的教學(xué),指導(dǎo)下個(gè)環(huán)節(jié)的安排;突破重點(diǎn)內(nèi)容后,進(jìn)入第三環(huán)節(jié)。

          (三)拓展知識,再獲新知----斜截式

          問題五:(1)一條直線與y軸交于點(diǎn)(0,3),直線的斜率為2,求這條直線的方程。

          (2)若直線l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線l的方程。

          [學(xué)生活動]學(xué)生獨(dú)立完成后口述,教師板書。

          [設(shè)計(jì)意圖] 由一般到特殊再到一般,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強(qiáng)調(diào)截距不是距離。類比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數(shù)的關(guān)系。通過下面的基礎(chǔ)練習(xí),突破重點(diǎn)。

          [練習(xí)]P95.3。

          [設(shè)計(jì)意圖]充分用好教材習(xí)題,及時(shí)反饋本環(huán)節(jié)的教學(xué)情況,指導(dǎo)下個(gè)環(huán)節(jié)的安排。

          (四)小結(jié)引申,思維延續(xù)----兩點(diǎn)式

          課堂小結(jié) 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)

          2、哪些地方還沒有學(xué)好?

          問題六:(1)直線l過(1,0)點(diǎn),且與直線平行,求直線l的方程。

          (2)直線l過點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線l的方程。

          [學(xué)生活動]學(xué)生獨(dú)立思考并嘗試自主完成,可以相互討論,探討解題思路。

          [教師活動]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問題的進(jìn)展過程,有時(shí)間的話,可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過程,糾正出現(xiàn)的錯(cuò)誤,規(guī)范書寫的格式;沒時(shí)間就布置分層作業(yè)。

          [設(shè)計(jì)意圖](1)小題與上一節(jié)的平行綜合,學(xué)生應(yīng)該有思路求出方程;(2)小題解決方法較多,預(yù)設(shè)有利用公式法、等斜率法、待定系數(shù)法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機(jī)會,以及課后學(xué)習(xí)的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節(jié)課研究直線的兩點(diǎn)式方程作了重要的準(zhǔn)備。

          分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

          選做題:P100.A組:1.(4)(5)(6).

          [設(shè)計(jì)意圖]通過分層作業(yè),做到因材施教,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展。

          四、教學(xué)特點(diǎn)分析

          (一)實(shí)例引導(dǎo)。在字母運(yùn)算、公式推導(dǎo)之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習(xí)知識的可能和興趣,關(guān)注學(xué)困生的成長與發(fā)展。

          (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問的方式敘述所學(xué)內(nèi)容,如:1.直角坐標(biāo)系內(nèi)的所有直線都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負(fù)數(shù)嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過的一次函數(shù)有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話與交流活動。

          (三)注重自主探究。設(shè)計(jì)問題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,布設(shè)了由淺入深的學(xué)習(xí)環(huán)境突破重點(diǎn)、難點(diǎn),引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程。設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題六的第(2)問,要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)造充分的探究空間,學(xué)生在交流成果的過程中,高效的完成教學(xué)任務(wù)。

        高中數(shù)學(xué)說課稿14

          一、教材分析

          1、《指數(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)

          《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)資料,是在學(xué)習(xí)了《指數(shù)》一節(jié)資料之后編排的。經(jīng)過本節(jié)課的學(xué)習(xí),既能夠?qū)χ笖?shù)和函數(shù)的概念等知識進(jìn)一步鞏固和深化,又能夠?yàn)楹竺孢M(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅(jiān)實(shí)的概念和圖象基礎(chǔ),又因?yàn)椤吨笖?shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅僅是本章《函數(shù)》的重點(diǎn)資料,也是高中學(xué)段的主要研究資料之一,有著不可替代的重要作用。

          此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體此刻細(xì)胞分裂、貸款利率的計(jì)算和考古中的年代測算等方面,所以學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實(shí)意義。本節(jié)資料的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時(shí)的重要作用。

          2、教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)

          經(jīng)過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了必須的認(rèn)知結(jié)構(gòu),主要體此刻三個(gè)方面:

          知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運(yùn)動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點(diǎn)來認(rèn)識函數(shù)。

          技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

          素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有必須的體會,已初步了解了數(shù)形結(jié)合的思想。

          鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知本事的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:

          (1)知識目標(biāo):

         、僬莆罩笖(shù)函數(shù)的概念;

         、谡莆罩笖(shù)函數(shù)的圖象和性質(zhì);

          ③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問題;

          (2)技能目標(biāo):

         、贊B透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法;

          ②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的本事;

          (3)情感目標(biāo):

          ①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題;

         、诮(jīng)過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的本事;

         、垲I(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。

          (4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。

          (5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

          突破難點(diǎn)的關(guān)鍵:尋找新知生長點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

          二、教法設(shè)計(jì)

          由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計(jì)中,我力圖經(jīng)過這一節(jié)課的教學(xué)到達(dá)不僅僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而到達(dá)培養(yǎng)學(xué)生學(xué)習(xí)本事的目的,我根據(jù)自我對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個(gè)方面:

          1、創(chuàng)設(shè)問題情景、按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

          2、強(qiáng)化“指數(shù)函數(shù)”概念、引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

          3、突出圖象的作用、在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家以往說過“數(shù)離形時(shí)少直觀,形離數(shù)時(shí)難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時(shí),更是直接由圖象觀察得出性質(zhì),所以圖象發(fā)揮了主要的作用。

          4、注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系、數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。

          三、學(xué)法指導(dǎo)

          本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對學(xué)生實(shí)際情景,我主要在以下幾個(gè)方面做了嘗試:

          1、再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫忙學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。

          2、領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時(shí)會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個(gè)高中的數(shù)學(xué)學(xué)習(xí)。

          3、在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的理解和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。

          4、注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不一樣難度的題目設(shè)計(jì)將盡可能照顧到課堂學(xué)生的個(gè)體差異。

          四、程序設(shè)計(jì)

          在設(shè)計(jì)本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程的原則,我設(shè)計(jì)了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。

          1、創(chuàng)設(shè)情景、導(dǎo)入新課

          教師活動:

          ①用電腦展示兩個(gè)實(shí)例,第一個(gè)是計(jì)算機(jī)價(jià)格下降問題,第二個(gè)是生物中細(xì)胞分裂的例子;

          ②將學(xué)生按奇數(shù)列、偶數(shù)列分組。

          學(xué)生活動:

         、俜謩e寫出計(jì)算機(jī)價(jià)格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個(gè)數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;

         、诨貞浿笖(shù)的概念;

         、蹥w納指數(shù)函數(shù)的概念;

         、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

          設(shè)計(jì)意圖:經(jīng)過生活實(shí)例激發(fā)學(xué)生的學(xué)習(xí)動機(jī),,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點(diǎn)做好準(zhǔn)備;

          2、啟發(fā)誘導(dǎo)、探求新知

          教師活動:

         、俳o出兩個(gè)簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象

          ②在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個(gè)指數(shù)函數(shù)的圖象

         、郯鍟笖(shù)函數(shù)的性質(zhì)。

          學(xué)生活動:

         、佼嫵鰞蓚(gè)簡單的指數(shù)函數(shù)圖象

         、诮涣、討論

         、蹥w納出研究函數(shù)性質(zhì)涉及的方面

          ④總結(jié)出指數(shù)函數(shù)的性質(zhì)。

          設(shè)計(jì)意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的資料有著必須的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,到達(dá)進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情景,學(xué)生就會很自然的經(jīng)過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時(shí)對于底數(shù)的討論也就變得順理成章。

        高中數(shù)學(xué)說課稿15

          一、教材分析

          本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計(jì)》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時(shí)。在上一課時(shí),學(xué)生已經(jīng)懂得根據(jù)兩個(gè)相關(guān)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個(gè)變量的相關(guān)性和最小二乘法的思想。

          從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點(diǎn),也是本章內(nèi)容的難點(diǎn)之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計(jì)學(xué)的重要基礎(chǔ)。

          二、教學(xué)目標(biāo)

          根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定本節(jié)課的教學(xué)目標(biāo)如下:

          知識與技能:

          1. 知道最小二乘法和回歸分析的思想;

          2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

          過程與方法:

          經(jīng)歷線性回歸分析過程,借助圖形計(jì)算器得出回歸直線,增強(qiáng)數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。

          情感態(tài)度與價(jià)值觀

          通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

          三、重點(diǎn)難點(diǎn)分析:

          根據(jù)目標(biāo)分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:

          教學(xué)重點(diǎn):

          1. 知道最小二乘法和回歸分析的思想;

          2.會求回歸直線

          教學(xué)難點(diǎn):

          建立回歸思想,會求回歸直線

          四、教學(xué)設(shè)計(jì)

          提出問題

          理論探究

          驗(yàn)證結(jié)論

          小結(jié)提升

          應(yīng)用實(shí)踐

          作業(yè)設(shè)計(jì)

          教學(xué)環(huán)節(jié)

          內(nèi)容及說明

          創(chuàng)設(shè)情境

          探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

          問題與引導(dǎo)設(shè)計(jì)

          師生活動

          設(shè)計(jì)意圖

          問題1. 利用圖形計(jì)算器作出散點(diǎn)圖,并指出上面的兩個(gè)變量是正相關(guān)還是負(fù)相關(guān)?

          教師提問,學(xué)生

          通過動手操作得

          出散點(diǎn)圖并回答

          以舊“探”新:對舊的知識進(jìn)行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進(jìn)生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

          教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點(diǎn)圖是研究兩個(gè)變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點(diǎn)圖,思考下面的問題2.

          問題2. 甲同學(xué)判斷某人年齡在65歲時(shí)體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,

          乙,丙三個(gè)同學(xué)的判斷有什么看法?

          學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯(cuò)誤的;有的學(xué)生可能認(rèn)為甲乙丙三個(gè)同學(xué)的判斷都是對的,答案不唯一

          該問題具有探究性、啟發(fā)性和開放性。鼓勵(lì)學(xué)生大膽表達(dá)自己的看法。通過設(shè)計(jì)該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規(guī)律,體會觀測點(diǎn)與回歸直線的關(guān)系;進(jìn)而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。

          問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個(gè)小組提出的問題多

          在小組討論的形式下和比較哪個(gè)小組提出的問題多,學(xué)生之間會充分的進(jìn)行交流,提出問題

          通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。

          學(xué)生可能提出的問題:

         、贋槭裁醇、丙同學(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較?

          ②某人年齡在65歲時(shí)體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時(shí)呢?

          ③這些樣本數(shù)據(jù)揭示出兩個(gè)相關(guān)變量之間怎樣的關(guān)系呢?

          ④怎樣用數(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個(gè)問題都是學(xué)生“火熱的思考”成果

        【高中數(shù)學(xué)說課稿】相關(guān)文章:

        高中數(shù)學(xué)章節(jié)說課稿07-19

        高中數(shù)學(xué)免費(fèi)說課稿09-30

        高中數(shù)學(xué)統(tǒng)計(jì)說課稿02-18

        高中數(shù)學(xué)獲獎(jiǎng)?wù)f課稿02-18

        高中數(shù)學(xué)向量說課稿02-18

        高中數(shù)學(xué)數(shù)列說課稿02-18

        高中數(shù)學(xué)經(jīng)典說課稿02-19

        高中數(shù)學(xué)的說課稿02-19

        高中數(shù)學(xué)說課稿08-26

        高中數(shù)學(xué)說課稿05-03

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>