高二數(shù)學(xué)知識點(diǎn)總結(jié)(精選15篇)
總結(jié)是對過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價(jià)的書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識上來,為此我們要做好回顧,寫好總結(jié)?偨Y(jié)怎么寫才不會(huì)流于形式呢?以下是小編整理的高二數(shù)學(xué)知識點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
高二數(shù)學(xué)知識點(diǎn)總結(jié)1
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個(gè)人,有幾種分法."排列"
把5本書分給3個(gè)人,有幾種分法"組合"
1.排列及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為
n!/(n1!_2!_.._k!).
k類元素,每類的個(gè)數(shù)無限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9________
從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n_n-1)_n-2)..(n-r+1);
因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r
高二數(shù)學(xué)知識點(diǎn)總結(jié)2
【不等關(guān)系及不等式】
一、不等關(guān)系及不等式知識點(diǎn)
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開方:a0
(nN,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
高二數(shù)學(xué)知識點(diǎn)總結(jié)3
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
然說難度比較大,我建議考生,采取分部得分整個(gè)試
高二數(shù)學(xué)知識點(diǎn)總結(jié)4
1.萬能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:單位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
高二數(shù)學(xué)知識點(diǎn)總結(jié)5
等差數(shù)列
對于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。
那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n—1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項(xiàng)公式。
此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。
值得說明的是,前n項(xiàng)的和Sn除以n后,便得到一個(gè)以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問題迎刃而解。
等比數(shù)列
對于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Tn。
那么,通項(xiàng)公式為(即a1乘以q的(n—1)次方,其推導(dǎo)為“連乘原理”的思想:
a2=a1Xq,
a3=a2Xq,
a4=a3Xq,
````````
an=an—1Xq,
將以上(n—1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。
此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和Tn=a1Xn
當(dāng)q≠1時(shí)該數(shù)列前n項(xiàng)的和Tn=a1X(1—q^(n))/(1—q)。
高二數(shù)學(xué)知識點(diǎn)總結(jié)6
分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個(gè)類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問題
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
(1)定義:
對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn)。
(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。
(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。
二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
三二分法
對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
1、函數(shù)的零點(diǎn)不是點(diǎn):
函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。
2、對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):
(1)、f(x)在[a,b]上連續(xù);
(2)、f(a)·f(b)<0;
(3)、在(a,b)內(nèi)存在零點(diǎn)。
這是零點(diǎn)存在的一個(gè)充分條件,但不必要。
3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號。
利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。
四判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
2、零點(diǎn)存在性定理法:
利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。
3、數(shù)形結(jié)合法:
轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題.先畫出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。
已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
3、數(shù)形結(jié)合法:
先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
高二數(shù)學(xué)知識點(diǎn)總結(jié)7
考點(diǎn)一:求導(dǎo)公式。
例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的值是3
考點(diǎn)二:導(dǎo)數(shù)的幾何意義。
例2.已知函數(shù)yf(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y
1x2,則f(1)f(1)2
,3)處的切線方程是例3.曲線yx32x24x2在點(diǎn)(1
點(diǎn)評:以上兩小題均是對導(dǎo)數(shù)的幾何意義的考查。
考點(diǎn)三:導(dǎo)數(shù)的幾何意義的應(yīng)用。
例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點(diǎn)x0,y0x00,求直線l的方程及切點(diǎn)坐標(biāo)。
點(diǎn)評:本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時(shí)應(yīng)注意“切點(diǎn)既在曲線上又在切線上”這個(gè)條件的應(yīng)用。函數(shù)在某點(diǎn)可導(dǎo)是相應(yīng)曲線上過該點(diǎn)存在切線的充分條件,而不是必要條件。
考點(diǎn)四:函數(shù)的單調(diào)性。
例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32
點(diǎn)評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識。
考點(diǎn)五:函數(shù)的極值。
例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時(shí)取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:
、偾髮(dǎo)數(shù)f'x;
、谇骹'x0的根;③將f'x0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。
高二數(shù)學(xué)知識點(diǎn)總結(jié)8
考點(diǎn)一:向量的概念、向量的基本定理
【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無法比較大小,它們的模可比較大小。
考點(diǎn)二:向量的運(yùn)算
【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的.運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。
考點(diǎn)三:定比分點(diǎn)
【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來幫助理解。
【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數(shù)的綜合問題
【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達(dá)到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數(shù)問題的交匯
【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應(yīng)用
【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
高二數(shù)學(xué)知識點(diǎn)總結(jié)9
概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.
高二數(shù)學(xué)知識點(diǎn)總結(jié)10
一、導(dǎo)數(shù)的應(yīng)用
1、用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。
2、生活中常見的函數(shù)優(yōu)化問題
1)費(fèi)用、成本最省問題
2)利潤、收益最大問題
3)面積、體積最(大)問題
二、推理與證明
1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識,分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。
2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
三、不等式
對于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。
通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。
四、坐標(biāo)平面上的直線
1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
五、圓錐曲線
1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
上及求曲線的交點(diǎn)。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。
3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過代數(shù)方法解決幾何問題。
高二數(shù)學(xué)知識點(diǎn)總結(jié)11
排列組合公式/排列組合計(jì)算公式
排列P——————和順序有關(guān)
組合C———————不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個(gè)人,有幾種分法。"排列"
把5本書分給3個(gè)人,有幾種分法"組合"
1.排列及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號p(n,m)表示。
p(n,m)=n(n—1)(n—2)……(n—m+1)=n!/(n—m)!(規(guī)定0!=1)。
2.組合及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù)。用符號
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n—m)!xm。;c(n,m)=c(n,n—m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n—r)!。
n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,..nk這n個(gè)元素的全排列數(shù)為n!/(n1!xn2!x..xnk。。
k類元素,每類的個(gè)數(shù)無限,從中取出m個(gè)元素的組合數(shù)為c(m+k—1,m)。
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n—1)....(n—m+1);Pnm=n!/(n—m)。ㄗⅲ!是階乘符號);Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm;Cnm=n!/m!(n—m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn—m
20xx—07—0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N—元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!—階乘,如9!=9x8x7x6x5x4x3x2x1
從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為nx(n—1)x(n—2),(n—r+1);
因?yàn)閺膎到(n—r+1)個(gè)數(shù)為n—(n—r+1)=r
舉例:
Q1:有從1到9共計(jì)9個(gè)號碼球,請問,可以組成多少個(gè)三位數(shù)?
A1:123和213是兩個(gè)不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計(jì)算范疇。
上問題中,任何一個(gè)號碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9—1種可能,個(gè)位數(shù)則應(yīng)該只有9—1—1種可能,最終共有9x8x7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9x8x7,(從9倒數(shù)3個(gè)的乘積)
Q2:有從1到9共計(jì)9個(gè)號碼球,請問,如果三個(gè)一組,代表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?
A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。
上問題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9x8x7/3x2x1
排列、組合的概念和公式典型例題分析
例1設(shè)有3名學(xué)生和4個(gè)課外小組。(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加。各有多少種不同同方法?
解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法。
。2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法。
點(diǎn)評由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問都用乘法原理進(jìn)行計(jì)算。
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?
解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:
∴符合題意的不同排法共有9種。
點(diǎn)評按照分“類”的思路,本題應(yīng)用了加法原理。為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問題的一種數(shù)學(xué)模型。
例3判斷下列問題是排列問題還是組合問題?并計(jì)算出結(jié)果。
。1)高三年級學(xué)生會(huì)有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?
。2)高二年級數(shù)學(xué)課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法?
。3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):①從中任取兩個(gè)數(shù)求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?
。4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?
分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題。其他類似分析。
(1)①是排列問題,共用了封信;②是組合問題,共需握手(次)。
。2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法。
(3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積。
。4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法。
例4證明。
證明左式
右式。
∴等式成立。
點(diǎn)評這是一個(gè)排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡化。
例5化簡。
解法一原式
解法二原式
點(diǎn)評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過程得以簡化。
例6解方程:(1);(2)。
解(1)原方程
解得。
。2)原方程可變?yōu)?/p>
∵,,
∴原方程可化為。
即,解得
第六章排列組合、二項(xiàng)式定理
一、考綱要求
1.掌握加法原理及乘法原理,并能用這兩個(gè)原理分析解決一些簡單的問題。
2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題。
3.掌握二項(xiàng)式定理和二項(xiàng)式系數(shù)的性質(zhì),并能用它們計(jì)算和論證一些簡單問題。
二、知識結(jié)構(gòu)
三、知識點(diǎn)、能力點(diǎn)提示
。ㄒ唬┘臃ㄔ沓朔ㄔ
說明加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排列、組合中有關(guān)問題提供了理論根據(jù)。
高二數(shù)學(xué)知識點(diǎn)總結(jié)12
一、直線與圓:
1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:
。1)點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為
。2)斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗(yàn)
。2)垂直A1A2+B1B2=0
5、點(diǎn)到直線的距離公式;
兩條平行線與的距離是
6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2
3、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
三、直線、平面、簡單幾何體:
1、學(xué)會(huì)三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
。1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);
。2)平行于x軸的線段長不變,平行于y軸的線段長減半.
。3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
。1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
(2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
(3)臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
。4)球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
。2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
。1)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
(2)直線與平面所成的角:直線與射影所成的角
四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.
2、導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;
、;⑥;⑦;⑧。
4.、導(dǎo)數(shù)的四則運(yùn)算法則:
5、導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮(dǎo)數(shù);
、谇蠓匠痰母
、哿斜恚簷z驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
、∏蟮母虎迅c區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結(jié)詞:
。1)且(and):命題形式pq;pqpqpqp
。2)或(or):命題形式pq;真真真真假
。3)非(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點(diǎn)是“一真即真,要假全假”;
“且命題”的真假特點(diǎn)是“一假即假,要真全真”;
“非命題”的真假特點(diǎn)是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
高二數(shù)學(xué)知識點(diǎn)總結(jié)13
直線方程:
1.點(diǎn)斜式:y-y0=k(x-x0)
(x0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。
2.斜截式:y=kx+b
直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。
3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。
如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對x的截距就是y=0時(shí),x的值,對y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。
高二數(shù)學(xué)知識點(diǎn)總結(jié)14
一、集合、簡易邏輯(14課時(shí),8個(gè))
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
二、函數(shù)(30課時(shí),12個(gè))
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)(46課時(shí),17個(gè))
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時(shí),5個(gè))
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線和圓的方程(22課時(shí),12個(gè))
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線(18課時(shí),7個(gè))
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。
九、直線、平面、簡單何體(36課時(shí),28個(gè))
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì)。
十一、概率(12課時(shí),5個(gè))
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))
1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。
十三、極限(12課時(shí),6個(gè))
1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))
1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。
十五、復(fù)數(shù)(4課時(shí),4個(gè))
1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。
高二數(shù)學(xué)知識點(diǎn)總結(jié)15
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作。
2。導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3。常見函數(shù)的導(dǎo)數(shù)公式:
4。導(dǎo)數(shù)的四則運(yùn)算法則:
5。導(dǎo)數(shù)的應(yīng)用:
。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮(dǎo)數(shù);
、谇蠓匠痰母;
、哿斜恚簷z驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
、∏蟮母;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
【高二數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
高二數(shù)學(xué)的知識點(diǎn)總結(jié)12-02
高二的數(shù)學(xué)的知識點(diǎn)總結(jié)04-22
數(shù)學(xué)高二知識點(diǎn)總結(jié)04-22
高二數(shù)學(xué)的數(shù)列知識點(diǎn)總結(jié)03-30
高二數(shù)學(xué)下冊知識點(diǎn)總結(jié)03-30
高二數(shù)學(xué)知識點(diǎn)總結(jié)08-04
數(shù)學(xué)高二知識點(diǎn)總結(jié)歸納12-29
高二數(shù)學(xué)知識點(diǎn)總結(jié)02-19