高一數(shù)學(xué)知識點總結(jié)整理
總結(jié)是對某一特定時間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,為此我們要做好回顧,寫好總結(jié)。那么如何把總結(jié)寫出新花樣呢?以下是小編收集整理的高一數(shù)學(xué)知識點總結(jié),歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學(xué)知識點總結(jié)1
考點要求:
1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點。
2、三視圖和其他的知識點結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計算的趨勢。
3、重點掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。
4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。
知識結(jié)構(gòu):
1、多面體的結(jié)構(gòu)特征
。1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的.底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。
。2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。
正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。
。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2、旋轉(zhuǎn)體的結(jié)構(gòu)特征
。1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。
。3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。
(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。
3、空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。
三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。
4、空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
。1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>
。2)畫幾何體的高
在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。
高一數(shù)學(xué)知識點總結(jié)2
【基本初等函數(shù)】
一、指數(shù)函數(shù)
。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù)。此時,的.次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。
當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
3、實數(shù)指數(shù)冪的運(yùn)算性質(zhì)
。ǘ┲笖(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一數(shù)學(xué)知識點總結(jié)3
1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。
3.不等式知識:突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點,主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。
4.立體幾何知識:20xx年已經(jīng)變得簡單,20xx年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的`問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。
5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。
6.導(dǎo)數(shù)知識:導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。
7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。
高一數(shù)學(xué)知識點總結(jié)4
冪函數(shù)的性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的.,因此下面給出冪函數(shù)在第一象限的各自情況。
可以看到:
。1)所有的圖形都通過(1,1)這點。
。2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。
。3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。
。4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。
。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。
(6)顯然冪函數(shù)。
解題方法:換元法
解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把?fù)雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。
練習(xí)題:
1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。
。1)求f(log2x)的最小值及對應(yīng)的x值;
。2)x取何值時,f(log2x)>f(1)且log2[f(x)]<f(1)?< p="">
2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點。
。1)求實數(shù)k的值及函數(shù)f—1(x)的解析式;
。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實數(shù)m的取值范圍。
高一數(shù)學(xué)知識點總結(jié)5
高一數(shù)學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的'字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數(shù)學(xué)知識點總結(jié)6
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;2.元素的互異性;3.元素的無序性
說明:
。1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
。2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的.一部分;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運(yùn)算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.
高一數(shù)學(xué)知識點總結(jié)7
內(nèi)容子交并補(bǔ)集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。
兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
形如y=k/x(k為常數(shù)且k≠0)的`函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為k。
給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。
當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
知識點:
1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為k。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
高一數(shù)學(xué)知識點總結(jié)8
NO.1立體幾何初步
柱、錐、臺、球的結(jié)構(gòu)特征
棱柱
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
棱臺
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
、趥(cè)面是梯形
③側(cè)棱交于原棱錐的頂點
圓柱
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:
①底面是全等的圓;
②母線與軸平行;
③軸與底面圓的半徑垂直;
、軅(cè)面展開圖是一個矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:
①底面是一個圓;
、谀妇交于圓錐的頂點;
、蹅(cè)面展開圖是一個扇形。
圓臺
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
①上下底面是兩個圓;
、趥(cè)面母線交于原圓錐的頂點;
、蹅(cè)面展開圖是一個弓形。
球體
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
①球的截面是圓;
、谇蛎嫔先我庖稽c到球心的.距離等于半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
NO.3空間幾何體的直觀圖——斜二測畫法
斜二測畫法
斜二測畫法特點
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
直線與方程
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
過兩點的直線的斜率公式:
(注意下面四點)
。1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
。3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。
冪函數(shù)
定義
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域
當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì)
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。
高一數(shù)學(xué)知識點總結(jié)9
集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。
例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。
3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。
什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的'概念。集合的概念,可通過直觀、公理的方法來下定義。
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
集合與集合之間的關(guān)系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
。ㄕf明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學(xué)教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)
高一數(shù)學(xué)知識點總結(jié)10
1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。
2.中元素各表示什么?
注重借助于數(shù)軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性質(zhì):
。3)德摩根定律:
4.你會用補(bǔ)集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6.命題的四種形式及其相互關(guān)系是什么?
。ɑ槟娣耜P(guān)系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7.對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的性,哪幾種對應(yīng)能構(gòu)成映射?
(一對一,多對一,允許B中有元素?zé)o原象。)
8.函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
。ǘx域、對應(yīng)法則、值域)
9.求函數(shù)的定義域有哪些常見類型?
10.如何求復(fù)合函數(shù)的定義域?
義域是_____________。
11.求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?
12.反函數(shù)存在的條件是什么?
。ㄒ灰粚(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
。á俜唇鈞;②互換x、y;③注明定義域)
13.反函數(shù)的性質(zhì)有哪些?
、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
14.如何用定義證明函數(shù)的單調(diào)性?
。ㄈ≈、作差、判正負(fù))
如何判斷復(fù)合函數(shù)的單調(diào)性?
∴……)
15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?
值是()
A.0B.1C.2D.3
∴a的值為3)
16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
。╢(x)定義域關(guān)于原點對稱)
注意如下結(jié)論:
。1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。
17.你熟悉周期函數(shù)的定義嗎?
函數(shù),T是一個周期。)
如:
18.你掌握常用的圖象變換了嗎?
注意如下“翻折”變換:
19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?
的雙曲線。
應(yīng)用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程
、谇箝]區(qū)間[m,n]上的最值。
、矍髤^(qū)間定(動),對稱軸動(定)的最值問題。
、芤辉畏匠谈姆植紗栴}。
由圖象記性質(zhì)!(注意底數(shù)的限定!)
利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?
20.你在基本運(yùn)算上常出現(xiàn)錯誤嗎?
21.如何解抽象函數(shù)問題?
。ㄙx值法、結(jié)構(gòu)變換法)
22.掌握求函數(shù)值域的常用方法了嗎?
(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)
如求下列函數(shù)的最值:
23.你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?
24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義
25.你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?
。▁,y)作圖象。
27.在三角函數(shù)中求一個角時要注意兩個方面——先求出某一個三角函數(shù)值,再判定角的范圍。
28.在解含有正、余弦函數(shù)的問題時,你注意(到)運(yùn)用函數(shù)的有界性了嗎?
29.熟練掌握三角函數(shù)圖象變換了嗎?
。ㄆ揭谱儞Q、伸縮變換)
平移公式:
圖象?
30.熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?
“奇”、“偶”指k取奇、偶數(shù)。
A.正值或負(fù)值B.負(fù)值C.非負(fù)值D.正值
31.熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?
理解公式之間的聯(lián)系:
應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)
具體方法:
。2)名的變換:化弦或化切
(3)次數(shù)的變換:升、降冪公式
(4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。
32.正、余弦定理的各種表達(dá)形式你還記得嗎?如何實現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?
。☉(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)
33.用反三角函數(shù)表示角時要注意角的范圍。
34.不等式的性質(zhì)有哪些?
答案:C
35.利用均值不等式:
值?(一正、二定、三相等)
注意如下結(jié)論:
36.不等式證明的基本方法都掌握了嗎?
。ū容^法、分析法、綜合法、數(shù)學(xué)歸納法等)
并注意簡單放縮法的應(yīng)用。
。ㄒ祈椡ǚ,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)
38.用“穿軸法”解高次不等式——“奇穿,偶切”,從根的右上方開始
39.解含有參數(shù)的不等式要注意對字母參數(shù)的討論
40.對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最后取各段的并集。)
證明:
。ò床坏忍柗较蚍趴s)
42.不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或“△”問題)
43.等差數(shù)列的定義與性質(zhì)
0的二次函數(shù))
項,即:
44.等比數(shù)列的定義與性質(zhì)
46.你熟悉求數(shù)列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習(xí)]
(2)疊乘法
解:
。3)等差型遞推公式
[練習(xí)]
。4)等比型遞推公式
[練習(xí)]
。5)倒數(shù)法
47.你熟悉求數(shù)列前n項和的常用方法嗎?
例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。
解:
[練習(xí)]
。2)錯位相減法:
(3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。
[練習(xí)]
48.你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期后,本利和為:
△若按復(fù)利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足
p——貸款數(shù),r——利率,n——還款期數(shù)
49.解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。
(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一
。3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不
50.解排列與組合問題的規(guī)律是:
相鄰問題_法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結(jié)果。
如:學(xué)號為1,2,3,4的四名學(xué)生的考試成績
則這四位同學(xué)考試成績的所有可能情況是()
A.24B.15C.12D.10
解析:可分成兩類:
。2)中間兩個分?jǐn)?shù)相等
相同兩數(shù)分別取90,91,92,對應(yīng)的排列可以數(shù)出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51.二項式定理
性質(zhì):
(3)最值:n為偶數(shù)時,n+1為奇數(shù),中間一項的二項式系數(shù)且為第
表示)
52.你對隨機(jī)事件之間的關(guān)系熟悉嗎?
的和(并)。
(5)互斥事件(互不相容事件):“A與B不能同時發(fā)生”叫做A、B互斥。
。6)對立事件(互逆事件):
。7)獨(dú)立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨(dú)立事件。
53.對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即
。5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗中A恰好發(fā)生
如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。
。1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
。3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為“恰有2次品”和“三件都是次品”
。4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。
54.抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。
55.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
。2)決定組距和組數(shù);
(3)決定分點;
。4)列頻率分布表;
。5)畫頻率直方圖。
如:從10名_與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊的概率為____________。
56.你對向量的有關(guān)概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。
。6)并線向量(平行向量)——方向相同或相反的向量。
規(guī)定零向量與任意向量平行。
。7)向量的加、減法如圖:
。8)平面向量基本定理(向量的分解定理)
的一組基底。
。9)向量的.坐標(biāo)表示
表示。
57.平面向量的數(shù)量積
數(shù)量積的幾何意義:
(2)數(shù)量積的運(yùn)算法則
[練習(xí)]
答案:
答案:2
答案:
58.線段的定比分點
※.你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?
59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?
平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:
線面平行的判定:
線面平行的性質(zhì):
三垂線定理(及逆定理):
線面垂直:
面面垂直:
60.三類角的定義及求法
。1)異面直線所成的角θ,0°<θ≤90°
。2)直線與平面所成的角θ,0°≤θ≤90°
。ㄈ咕定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關(guān)的角。
、谧C明其符合定義,并指出所求作的角。
、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。
[練習(xí)]
。1)如圖,OA為α的斜線OB為其在α_影,OC為α內(nèi)過O點任一直線。
。2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側(cè)面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
、谇螽惷嬷本BD1和AD所成的角;
、矍蠖娼荂1—BD1—B1的大小。
。3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。
。ā逜B∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61.空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉(zhuǎn)化為兩點的距離,構(gòu)造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
。1)點C到面AB1C1的距離為___________;
。2)點B到面ACB1的距離為____________;
。3)直線A1D1到面AB1C1的距離為____________;
。4)面AB1C與面A1DC1的距離為____________;
。5)點B到直線A1C1的距離為_____________。
62.你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?
正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
它們各包含哪些元素?
63.球有哪些性質(zhì)?
。2)球面上兩點的距離是經(jīng)過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。
。5)球內(nèi)接長方體的對角線是球的直徑。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。
積為()
答案:A
64.熟記下列公式了嗎?
。2)直線方程:
65.如何判斷兩直線平行、垂直?
66.怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
67.怎樣判斷直線與圓錐曲線的位置?
68.分清圓錐曲線的定義
70.在圓錐曲線與直線聯(lián)立求解時,消元后得到的方程,要注意其二次項系數(shù)是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進(jìn)行。)
71.會用定義求圓錐曲線的焦半徑嗎?
如:
通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準(zhǔn)線相切。
72.有關(guān)中點弦問題可考慮用“代點法”。
答案:
73.如何求解“對稱”問題?
。1)證明曲線C:F(x,y)=0關(guān)于點M(a,b)成中心對稱,設(shè)A(x,y)為曲線C上任意一點,設(shè)A'(x',y')為A關(guān)于點M的對稱點。
75.求軌跡方程的常用方法有哪些?注意討論范圍。
。ㄖ苯臃、定義法、轉(zhuǎn)移法、參數(shù)法)
76.對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
高一數(shù)學(xué)知識點總結(jié)11
函數(shù)的概念
函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A---B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.
。1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
。2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
函數(shù)的三要素:定義域、值域、對應(yīng)法則
函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域
。2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。
。3)列表法:選取的'自變量要有代表性,可以反應(yīng)定義域的特征。
4、函數(shù)圖象知識歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.
。2)畫法
A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。
(3)函數(shù)圖像平移變換的特點:
1)加左減右——————只對x
2)上減下加——————只對y
3)函數(shù)y=f(x)關(guān)于X軸對稱得函數(shù)y=-f(x)
4)函數(shù)y=f(x)關(guān)于Y軸對稱得函數(shù)y=f(-x)
5)函數(shù)y=f(x)關(guān)于原點對稱得函數(shù)y=-f(-x)
6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得
函數(shù)y=|f(x)|
7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱的圖像得函數(shù)f(|x|)
高一數(shù)學(xué)知識點總結(jié)12
一、立體幾何常用公式
S(圓柱全面積) = 2πr(r+L);
V(圓柱體積)= Sh;
S(圓錐全面積) = πr(r+L);
V(圓錐體積)= 1/3 Sh;
S(圓臺全面積) = π(r^2+R^2+rL+RL);
V(圓臺體積)= 1/3[s+S+√(s+S)]h;
S(球面積) = 4πR^2;
V(球體積) = 4/3 πR^3
二、立體幾何常用定理
。1)用一個平面去截一個球,截面是圓面
。2)球心和截面圓心的連線垂直于截面
。3)球心到截面的距離d與球的半徑R及截面半徑r有下面關(guān)系:r=√(R^2 -d^2)
。4)球面被經(jīng)過球心的.平面載得的圓叫做大圓,被不經(jīng)過球心的載面截得的圓叫做小圓
。5)在球面上兩點之間連線的最短長度,就是經(jīng)過這兩點的大圓在這兩點間的一段劣弧的長度,這個弧長叫做兩點間的球面距離.
高一數(shù)學(xué)知識點總結(jié)13
一、圓錐曲線的定義
1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.
2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.
3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的`點的軌跡叫做圓錐曲線.當(dāng)01時為雙曲線.
二、圓錐曲線的方程
1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)
2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質(zhì)
1.橢圓:+=1(a>b>0)
。1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±
2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x
3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-
高一數(shù)學(xué)知識點總結(jié)14
一、定義與定義式:
自變量x和因變量有如下關(guān)系:
=x+b
則此時稱是x的一次函數(shù)。
特別地,當(dāng)b=0時,是x的正比例函數(shù)。
即:=x(為常數(shù),≠0)
二、一次函數(shù)的性質(zhì):
1.的變化值與對應(yīng)的x的變化值成正比例,比值為
即:=x+b(為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)x=0時,b為函數(shù)在軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
。3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,),都滿足等式:=x+b。(2)一次函數(shù)與軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/,0)正比例函數(shù)的圖像總是過原點。
3.,b與函數(shù)圖像所在象限:
當(dāng)>0時,直線必通過一、三象限,隨x的增大而增大;
當(dāng)<0時,直線必通過二、四象限,隨x的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限。
特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的'是正比例函數(shù)的圖像。
這時,當(dāng)>0時,直線只通過一、三象限;當(dāng)<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點A(x1,1);B(x2,2),請確定過點A、B的一次函數(shù)的表達(dá)式。
。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為=x+b。
。2)因為在一次函數(shù)上的任意一點P(x,),都滿足等式=x+b。所以可以列出2個方程:1=x1+b……①和2=x2+b……②
。3)解這個二元一次方程,得到,b的值。
。4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人補(bǔ)充)
1.求函數(shù)圖像的值:(1-2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與軸平行線段的中點:|1-2|/2
4.求任意線段的長:√(x1-x2)^2+(1-2)^2(注:根號下(x1-x2)與(1-2)的平方和)
高一數(shù)學(xué)知識點總結(jié)15
。ㄒ唬﹫A的標(biāo)準(zhǔn)方程
1.圓的定義:平面內(nèi)到一定點的距離等于定長的點的軌跡叫做圓,定點叫圓的圓心,定長叫做圓的半徑。
2.圓的標(biāo)準(zhǔn)方程:已知圓心為(a,b),半徑為r,則圓的方程為(x-a)2+(y-b)2=r2。
說明:
。1)上式稱為圓的標(biāo)準(zhǔn)方程.
。2)如果圓心在坐標(biāo)原點,這時a=0,b=0,圓的方程就是x2+y2=r2
(3)圓的標(biāo)準(zhǔn)方程顯示了圓心為(a,b),半徑為r這一幾何性質(zhì),即(x-a)2+(y-b)2=r2——圓心為(a,b),半徑為r。
。4)確定圓的條件
由圓的標(biāo)準(zhǔn)方程知有三個參數(shù)a、b、r,只要求出a、b、r,這時圓的方程就被確定。因此,確定圓的'方程,需三個獨(dú)立的條件,其中圓心是圓的定位條件,半徑是圓的定型條件。
。5)點與圓的位置關(guān)系的判定
若點M(x1,y1)在圓外,則點到圓心的距離大于圓的半徑,即(x-a)2+(y-b)2>r2
若點M(x1,y1)在圓內(nèi),則點到圓心的距離小于圓的半徑,即(x-a)2+(y-b)2<r2
。ǘ﹫A的一般方程
任何一個圓的方程都可以寫成下面的形式:
x2+y2+Dx+Ey+F=0①
將①配方得:
②(x+D/2)2+(y+E/2)2=D2+E2-4F/4
當(dāng)時,方程①表示以(-D/2,-E/2)為圓心,以為半徑的圓;
當(dāng)時,方程①只有實數(shù)解,所以表示一個點(-D/2,-E/2);
當(dāng)時,方程①沒有實數(shù)解,因此它不表示任何圖形
故當(dāng)時,方程①表示一個圓,方程①叫做圓的一般方程
圓的標(biāo)準(zhǔn)方程的優(yōu)點在于它明確地指出了圓心和半徑,而一般方程突出了方程形式上的特點:
。1)和的系數(shù)相同,且不等于0;
。2)沒有xy這樣的二次項
以上兩點是二元二次方程表示圓的必要條件,但不是充分條件
要求出圓的一般方程,只要求出三個系數(shù)D、E、F就可以了
。ㄈ┲本和圓的位置關(guān)系
直線與圓的位置關(guān)系
研究直線與圓的位置關(guān)系有兩種方法:
。╨)幾何法:令圓心到直線的距離為d,圓的半徑為r
d>r直線與圓相離;d=r直線與圓相切;0≤d
【高一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
數(shù)學(xué)高一函數(shù)知識點總結(jié)11-03
高一數(shù)學(xué)函數(shù)的知識點總結(jié)01-15
高一數(shù)學(xué)集合知識點總結(jié)04-11
高一數(shù)學(xué)下知識點總結(jié)07-11
高一數(shù)學(xué)必修知識點總結(jié)12-15
高一數(shù)學(xué)集合知識點總結(jié)12-01