1. <rp id="zsypk"></rp>

      2. 初中數(shù)學(xué)解題技巧

        時(shí)間:2022-08-23 15:31:04 學(xué)習(xí)方法 我要投稿

        初中數(shù)學(xué)解題技巧

          學(xué)習(xí)能力終究成為了我們這個(gè)時(shí)代的核心競(jìng)爭(zhēng)力,也成為了最值得我們提升自己和發(fā)展事業(yè)的核心能力,那么究竟有多少人已經(jīng)掌握了屬于自己的學(xué)習(xí)方法呢?下面和小編一起來(lái)看初中數(shù)學(xué)解題技巧,希望有所幫助!

        初中數(shù)學(xué)解題技巧

          1、配方法

          所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

          2、因式分解法

          因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角函數(shù)等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

          3、換元法

          換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

          4、判別式法與韋達(dá)定理

          一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判別式△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至解析幾何、三角函數(shù)運(yùn)算中都有非常廣泛的應(yīng)用。

          韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。

          5、待定系數(shù)法

          在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的重要方法之一。

          6、構(gòu)造法

          在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

          7、反證法

          反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。

          用反證法證明一個(gè)命題的步驟,大體上分為:

          (1)反設(shè);

          (2)歸謬;

          (3)結(jié)論。

          反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

          歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

          8、等(面或體)積法

          平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積(體積),而且用它來(lái)證明(計(jì)算)幾何題有時(shí)會(huì)收到事半功倍的'效果。運(yùn)用面積(體積)關(guān)系來(lái)證明或計(jì)算幾何題的方法,稱(chēng)為等(面或體)積法,它是幾何中的一種常用方法。

          用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點(diǎn)是把已知和未知各量用面積(體積)公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用等(面或體)積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

          9、幾何變換法

          在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。

          幾何變換包括:

          (1)平移;

          (2)旋轉(zhuǎn);

          (3)對(duì)稱(chēng)。

          10、客觀性題的解題方法

          選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。

          拓展閱讀:

          初中數(shù)學(xué)題型解題技巧

          數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門(mén)學(xué)科,從某種角度看屬于形式科學(xué)的一種。數(shù)學(xué)家和哲學(xué)家對(duì)數(shù)學(xué)的確切范圍和定義有一系列的看法。

          初中數(shù)學(xué)解題技巧:題型特點(diǎn)

         。1)概念性強(qiáng):數(shù)學(xué)中的每個(gè)術(shù)語(yǔ)、符號(hào),乃至習(xí)慣用語(yǔ),往往都有明確具體的含義,這個(gè)特點(diǎn)反映到選擇題中,表現(xiàn)出來(lái)的就是試題的概念性強(qiáng),試題的陳述和信息的傳遞,都是以數(shù)學(xué)的學(xué)科規(guī)定與習(xí)慣為依據(jù),決不標(biāo)新立異。

         。2)量化突出:數(shù)量關(guān)系的研究是數(shù)學(xué)的一個(gè)重要的組成部分,也是數(shù)學(xué)考試中一項(xiàng)主要的內(nèi)容,在高考的數(shù)學(xué)選擇題中,定量型的試題所占的比重很大,而且許多從形式上看為計(jì)算定量型選擇題,其實(shí)不是簡(jiǎn)單或機(jī)械的計(jì)算問(wèn)題,其中往往蘊(yùn)含了對(duì)概念、原理、性質(zhì)和法則的考查,把這種考查與定量計(jì)算緊密地結(jié)合在一起,形成了量化突出的試題特點(diǎn)。

          (3)充滿(mǎn)思辨性:這個(gè)特點(diǎn)源于數(shù)學(xué)的高度抽象性、系統(tǒng)性和邏輯性。作為數(shù)學(xué)選擇題,尤其是用于選擇性考試的高考數(shù)學(xué)試題,只憑簡(jiǎn)單計(jì)算或直觀感知便能正確作答的試題不多,幾乎可以說(shuō)并不存在,絕大多數(shù)的選擇題,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿(mǎn)題目的字里行間。

         。4)形數(shù)兼?zhèn)洌簲?shù)學(xué)的研究對(duì)象不僅是數(shù),還有圖形,而且對(duì)數(shù)和圖形的討論與研究,不是孤立開(kāi)來(lái)分割進(jìn)行,而是有分有合,將它們辯證統(tǒng)一起來(lái)。這個(gè)特色在高中數(shù)學(xué)中已經(jīng)得到充分的顯露。因此,在高考的數(shù)學(xué)選擇題中,便反映出形數(shù)兼?zhèn)溥@一特點(diǎn),其表現(xiàn)是幾何選擇題中常常隱藏著代數(shù)問(wèn)題,而代數(shù)選擇題中往往又寓有幾何圖形的問(wèn)題。因此,數(shù)形結(jié)合與形數(shù)分離的解題方法是高考數(shù)學(xué)選擇題的一種重要且有效的思想方法與解題方法。

         。5)解法多樣化:以其他學(xué)科比較,“一題多解”的現(xiàn)象在數(shù)學(xué)中表現(xiàn)突出,尤其是數(shù)學(xué)選擇題由于它有備選項(xiàng),給試題的解答提供了豐富的有用信息,有相當(dāng)大的提示性,為解題活動(dòng)展現(xiàn)了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利于對(duì)考生思維深度的考查。

          初中數(shù)學(xué)考試必備解題技巧

          選擇題

          1、注意選擇題要看完所有選項(xiàng),做選擇題可運(yùn)用各種解題的方法,常見(jiàn)的方法如直接法,特殊值法,排除法,驗(yàn)證法,圖解法,假設(shè)法(即反證法),動(dòng)手操作法(比如折一折,量一量等方法)。

          2、采用淘汰法和代入檢驗(yàn)法可節(jié)省時(shí)間。有些判斷幾個(gè)命題正確個(gè)數(shù)的題目,一定要慎重,你認(rèn)為錯(cuò)誤的最好能找出反例,要注意分類(lèi)思想的運(yùn)用;對(duì)于選擇題中有“或”和“且”的選項(xiàng)一定要警惕,看看要不要取舍。

          填空題

          1、注意一題多解的情況;

          2、注意題目的隱含條件,比如二次項(xiàng)系數(shù)不為0,實(shí)際問(wèn)題中的整數(shù)等;

          3、要注意是否帶單位,表達(dá)格式一定是最終化簡(jiǎn)結(jié)果;

          4、求角、線段的長(zhǎng),實(shí)在不會(huì)時(shí),可以嘗試猜測(cè)或度量法。

          解答題

         、僮⒁庖(guī)范答題,過(guò)程和結(jié)論都要書(shū)寫(xiě)規(guī)范。

          ②計(jì)算題一定要細(xì)心,最后答案要最簡(jiǎn),要保證絕對(duì)正確。

         、巯然(jiǎn)后求值問(wèn)題,要先化到最簡(jiǎn),代入求值時(shí)要注意:分母不為零;適當(dāng)考慮技巧,如整體代入。

         、芙夥质椒匠桃欢ㄒ獧z驗(yàn),應(yīng)用題中也是如此。

         、萁庵苯侨切螁(wèn)題,注意交代輔助線的作法,解題步驟。關(guān)注直角、特殊角。取近似值時(shí)一定要按照題目要求。

         、迣(shí)際應(yīng)用問(wèn)題,題目長(zhǎng),多讀題,根據(jù)題意,找準(zhǔn)關(guān)系,列方程、不等式(組)或函數(shù)關(guān)系式。求出方程的解后,要注意驗(yàn)根,是否符合實(shí)際問(wèn)題,要記著取舍。

         、吒怕暑}:要通過(guò)畫(huà)樹(shù)狀圖、列表或列舉,列出所有等可能的結(jié)果,然后再計(jì)算概率。

          ⑧方案設(shè)計(jì)題:要看清楚題目的設(shè)計(jì)要求,設(shè)計(jì)時(shí)考慮滿(mǎn)足要求的最簡(jiǎn)方案,不要考慮復(fù)雜、追求美觀的方案。

          注意事項(xiàng)

          數(shù)學(xué)比較注重基礎(chǔ),平時(shí)的努力幾乎可以把技巧的效果壓榨成零,但在考試中也要注意以下三個(gè)小點(diǎn):

         。1)先易后難,不要死磕一題,搶分節(jié)奏。要有選擇的放棄,遇到暫時(shí)不會(huì)做的,先放一下,做完其他題目之后回過(guò)頭來(lái)再做。

         。2)靜下心檢查。做完題目之后,留出1分鐘左右的時(shí)間查看這一道題是否正確,在求做題速度的同時(shí),提高正確率。

         。3)實(shí)在不會(huì)做,想想定義。前面也說(shuō)數(shù)學(xué)是基礎(chǔ)性學(xué)科,出的題目也多是從基礎(chǔ)延伸出來(lái)的,遇到不會(huì)做的題目,回歸基礎(chǔ),將相關(guān)定理、公式等列出來(lái),進(jìn)行必要的運(yùn)算,盡量不要空著。

        【初中數(shù)學(xué)解題技巧】相關(guān)文章:

        初中學(xué)習(xí)數(shù)學(xué)解題技巧11-30

        中考數(shù)學(xué)的解題技巧總結(jié)10-15

        初中物理解題技巧12-15

        數(shù)學(xué)手抄報(bào)的解題技巧06-20

        數(shù)學(xué)選擇題的解題技巧02-23

        高考數(shù)學(xué)大題解題技巧12-15

        高中數(shù)學(xué)解題技巧方法總結(jié)01-20

        數(shù)學(xué)考研線性代數(shù)解題技巧總結(jié)11-19

        初中語(yǔ)文關(guān)于詩(shī)的解題技巧07-02

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>