關(guān)于復(fù)數(shù)的知識(shí)點(diǎn)總結(jié)
在日常過程學(xué)習(xí)中,相信大家一定都接觸過知識(shí)點(diǎn)吧!知識(shí)點(diǎn)也可以通俗的理解為重要的內(nèi)容。還在苦惱沒有知識(shí)點(diǎn)總結(jié)嗎?下面是小編收集整理的關(guān)于復(fù)數(shù)的知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
復(fù)數(shù)的知識(shí)點(diǎn)總結(jié) 篇1
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實(shí)軸、虛軸:
點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即
這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過來,復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。
兩個(gè)復(fù)數(shù)相等的定義:
如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0
a=0,b=0.
復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題解決的途徑。
復(fù)數(shù)相等特別提醒:
一般地,兩個(gè)復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。
解復(fù)數(shù)相等問題的方法步驟:
(1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;
(2)根據(jù)復(fù)數(shù)相等的充要條件解之。
學(xué)好初中數(shù)學(xué)的方法
1、重視課本的'內(nèi)容
書本知識(shí)是初中生學(xué)習(xí)數(shù)學(xué)最根本的一部分了,初中生一定要重視書本上的知識(shí)點(diǎn),不管是概念還是公式以及書本上的練習(xí)題,初中生一定要熟練掌握。初中生要想更熟練的掌握書本的知識(shí)點(diǎn),可以將數(shù)學(xué)課本的每一章節(jié),從頭到尾的仔細(xì)閱讀,這樣可以增加自己對(duì)容易忽略的知識(shí)點(diǎn)的了解。有很多學(xué)生常常會(huì)忽略課本的習(xí)題,雖然課本的習(xí)題很簡(jiǎn)單,但是考察的知識(shí)點(diǎn)卻特別有針對(duì)性,所以一定要引起學(xué)生的重視。
2、通過聯(lián)系對(duì)比進(jìn)行辨析
在數(shù)學(xué)知識(shí)中有不少是由同一基本概念和方法引申出來的種屬及其他相關(guān)知識(shí),或看來相同,實(shí)質(zhì)不同的知識(shí),學(xué)習(xí)這類知識(shí)的主要方法,是用找聯(lián)系、抓對(duì)比進(jìn)行辨析。如直線、射線、線段這些概念,它們既有聯(lián)系又有區(qū)別。
3、多做練習(xí)題
要想學(xué)好初中數(shù)學(xué),必須多做練習(xí),我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識(shí)攪得一塌糊涂,理不出頭緒,浪費(fèi)時(shí)間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識(shí),是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣等等。
4、課后總結(jié)和反思
在進(jìn)行單元小結(jié)或?qū)W期總結(jié)時(shí),要做到以下幾點(diǎn):一看:看書、看筆記、看習(xí)題,通過看,回憶、熟悉所學(xué)內(nèi)容;二列:列出相關(guān)的知識(shí)點(diǎn),標(biāo)出重點(diǎn)、難點(diǎn),列出各知識(shí)點(diǎn)之間的關(guān)系,這相當(dāng)于寫出總結(jié)要點(diǎn);三做:在此基礎(chǔ)上有目的、有重點(diǎn)、有選擇地解一些各種檔次、類型的習(xí)題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
數(shù)學(xué)加法心算技巧
1、分裂再湊整數(shù)加法;
比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
3、變整數(shù)再減去
比如,26+18=44,把“18”變成“20-2”,那么就是26+20-2=44;
4、比如;387+983=1370,把“983”變成“1000-17”,那么就是387+1000-17=1370;
5、錯(cuò)位數(shù)相加
比如,個(gè)位加十位得數(shù)是個(gè)位的;
51+15=66;這樣算:5+1得6;1+5得6;兩6合拼
72+27=99;這樣算:7+2得9;2+7得9;兩9合拼
63+36=99;這樣算:6+3得9;3+6得9;兩9合拼
52+25=77;這樣算:5+2得7;2+5得7;兩7合拼
6、比如,個(gè)位加十位得數(shù)是十位的;
78+87=165;這樣算:7+8=15,再把“15”兩個(gè)數(shù)字“1”和“5”相加得6,把這個(gè)“6”放在“15”的中間,得出“165”;
67+76=143,這樣算:6+7=13,再把“13”兩個(gè)數(shù)字“1”和“3”相加得4,把這個(gè)“4”放在“13”的中間,得出“143”;
復(fù)數(shù)的知識(shí)點(diǎn)總結(jié) 篇2
定義
數(shù)集拓展到實(shí)數(shù)范圍內(nèi),仍有些運(yùn)算無法進(jìn)行。比如判別式小于0的一元二次方程仍無解,因此將數(shù)集再次擴(kuò)充,達(dá)到復(fù)數(shù)范圍。形如z=a+bi的數(shù)稱為復(fù)數(shù)(complex number),其中規(guī)定i為虛數(shù)單位,且i^2=i*i=-1(a,b是任意實(shí)數(shù))我們將復(fù)數(shù)z=a+bi中的實(shí)數(shù)a稱為復(fù)數(shù)z的實(shí)部(real part)記作Rez=a 實(shí)數(shù)b稱為復(fù)數(shù)z的虛部(imaginary part)記作 Imz=b. 已知:當(dāng)b=0時(shí),z=a,這時(shí)復(fù)數(shù)成為實(shí)數(shù) 當(dāng)a=0且b0時(shí),z=bi,我們就將其稱為純虛數(shù)。
運(yùn)算法則
加法法則
復(fù)數(shù)的加法法則:設(shè)z1=a+bi,z2=c+di是任意兩個(gè)復(fù)數(shù)。兩者和的實(shí)部是原來兩個(gè)復(fù)數(shù)實(shí)部的和,它的虛部是原來兩個(gè)虛部的和。兩個(gè)復(fù)數(shù)的和依然是復(fù)數(shù)。
即 (a+bi)+(c+di)=(a+c)+(b+d)i.
乘法法則
復(fù)數(shù)的乘法法則:把兩個(gè)復(fù)數(shù)相乘,類似兩個(gè)多項(xiàng)式相乘,結(jié)果中i^2 = 1,把實(shí)部與虛部分別合并。兩個(gè)復(fù)數(shù)的積仍然是一個(gè)復(fù)數(shù)。
即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
除法法則
復(fù)數(shù)除法定義:滿足(c+di)(x+yi)=(a+bi)的復(fù)數(shù)x+yi(x,yR)叫復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商運(yùn)算方法:將分子和分母同時(shí)乘以分母的共軛復(fù)數(shù),再用乘法法則運(yùn)算,
即 (a+bi)/(c+di)
=[(a+bi)(c-di)]/[(c+di)(c-di)]
=[(ac+bd)+(bc-ad)i]/(c^2+d^2).
開方法則
若z^n=r(cos+isin),則
z=nr[cos(2k)/n+isin(2k)/n](k=0,1,2,3n-1)
【關(guān)于復(fù)數(shù)的知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
this的復(fù)數(shù)10-12
bus的復(fù)數(shù)形式?10-12
milk的復(fù)數(shù)怎么表示10-12
grass的復(fù)數(shù)形式10-12
mouth的復(fù)數(shù)形式10-12
hole的復(fù)數(shù)形式10-11
fish的是單數(shù)還是復(fù)數(shù)10-12