初三數(shù)學(xué)切線長(zhǎng)定理教案
作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,時(shí)常需要用到教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的初三數(shù)學(xué)切線長(zhǎng)定理教案,僅供參考,大家一起來(lái)看看吧。
1、教材分析
(1)知識(shí)結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
重點(diǎn):及其應(yīng)用。因再次體現(xiàn)了圓的軸對(duì)稱性,它為證明線段相等、角相等、弧相等、垂直關(guān)系等提供了理論依據(jù),它屬于工具知識(shí),經(jīng)常應(yīng)用,因此它是本節(jié)的重點(diǎn)。
難點(diǎn):與有關(guān)的證明和計(jì)算問題。如120頁(yè)練習(xí)題中第3題,它不僅應(yīng)用,還用到解方程組的知識(shí),是代數(shù)與幾何的綜合題,學(xué)生往往不能很好的把知識(shí)連貫起來(lái)。
2、教法建議
本節(jié)內(nèi)容需要一個(gè)課時(shí)。
(1)在教學(xué)中,組織學(xué)生自主觀察、猜想、證明,并深刻剖析的基本圖形;對(duì)重要的結(jié)論及時(shí)總結(jié);
(2)在教學(xué)中,以“觀察——猜想——證明——剖析——應(yīng)用——?dú)w納”為主線,開展在教師組織下,以學(xué)生為主體,活動(dòng)式教學(xué)。
教學(xué)目標(biāo)
1、理解切線長(zhǎng)的概念,掌握;
2、通過對(duì)例題的分析,培養(yǎng)學(xué)生分析總結(jié)問題的習(xí)慣,提高學(xué)生綜合運(yùn)用知識(shí)解題的能力,培養(yǎng)數(shù)形結(jié)合的思想。
3、通過對(duì)定理的猜想和證明,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,樹立科學(xué)的學(xué)習(xí)態(tài)度。
教學(xué)重點(diǎn):
教學(xué)難點(diǎn) :
教學(xué)過程
設(shè)計(jì):
(一)觀察、猜想、證明,形成定理
1、切線長(zhǎng)的概念。
如圖,P是⊙O外一點(diǎn),PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點(diǎn)P到⊙O的切線長(zhǎng)。
引導(dǎo)學(xué)生理解:切線和切線長(zhǎng)是兩個(gè)不同的概念,切線是直線,不能度量;切線長(zhǎng)是線段的長(zhǎng),這條線段的兩個(gè)端點(diǎn)分別是圓外一點(diǎn)和切點(diǎn),可以度量。
2、觀察
利用電腦變動(dòng)點(diǎn)P 的位置,觀察圖形的特征和各量之間的關(guān)系。
3、猜想
引導(dǎo)學(xué)生直觀判斷,猜想圖中PA是否等于PB。 PA=PB。
4、證明猜想,形成定理。
猜想是否正確。需要證明。
組織學(xué)生分析證明方法。關(guān)鍵是作出輔助線OA,OB,要證明PA=PB。
想一想:根據(jù)圖形,你還可以得到什么結(jié)論?
∠OPA=∠OPB(如圖)等。
。簭膱A外一點(diǎn)引圓的'兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
5、歸納:
把前面所學(xué)的切線的5條性質(zhì)與一起歸納切線的性質(zhì)
6、的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點(diǎn)。直線OP交⊙O于點(diǎn)D,E,交AP于C
(1)寫出圖中所有的垂直關(guān)系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形。
說(shuō)明:對(duì)基本圖形的深刻研究和認(rèn)識(shí)是在學(xué)習(xí)幾何中關(guān)鍵,它是靈活應(yīng)用知識(shí)的基礎(chǔ)。
(二)應(yīng)用、歸納、反思
例1、已知:如圖,P為⊙O外一點(diǎn),PA,PB為⊙O的切線,
A和B是切點(diǎn),BC是直徑。
求證:AC∥OP。
分析:從條件想,由P是⊙O外一點(diǎn),PA、PB為⊙O的切線,A,B是切點(diǎn)可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯(lián)想到與直徑有關(guān)的定理“垂徑定理”和“直徑所對(duì)的圓周角是直角”等。于是想到可能作輔助線AB。
從結(jié)論想,要證AC∥OP,如果連結(jié)AB交OP于O,轉(zhuǎn)化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來(lái)考慮。也可考慮通過平行線的判定定理來(lái)證,可獲得多種證法。
證法一。如圖。連結(jié)AB。
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學(xué)生板書)
證法二。連結(jié)AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三。連結(jié)AB,設(shè)OP與AB弧交于點(diǎn)E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導(dǎo)學(xué)生比較以上證法,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生靈活應(yīng)用知識(shí)的能力。
例2、 圓的外切四邊形的兩組對(duì)邊的和相等。
(分析和解題略)
反思:(1)例3事實(shí)上是圓外切四邊形的一個(gè)重要性質(zhì),請(qǐng)學(xué)生記住結(jié)論。(2)圓內(nèi)接四邊形的性質(zhì):對(duì)角互補(bǔ)。
P120練習(xí):
練習(xí)1 填空
如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________
練習(xí)2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內(nèi)切圓分別和BC,AC,AB切于點(diǎn)D,E,F(xiàn),求AF,AD和CE的長(zhǎng)。
分析:設(shè)各切線長(zhǎng)AF,BD和CE分別為x厘米,y厘米,z厘米。后列出關(guān)于x , y,z的方程組,解方程組便可求出結(jié)果。
(解略)
反思:解這個(gè)題時(shí),除了要用三角形內(nèi)切圓的概念和之外,還要用到解方程組的知識(shí),是一道綜合性較強(qiáng)的計(jì)算題。通過對(duì)本題的研究培養(yǎng)學(xué)生的綜合應(yīng)用知識(shí)的能力。
(三)小結(jié)
1、提出問題學(xué)生歸納
(1)這節(jié)課學(xué)習(xí)的具體內(nèi)容;
(2)學(xué)習(xí)用的數(shù)學(xué)思想方法;
(3)應(yīng)注意哪些概念之間的區(qū)別?
2、歸納基本圖形的結(jié)論
3、學(xué)習(xí)了用代數(shù)方法解決幾何問題的思想方法。
(四)作業(yè)
教材P131習(xí)題7。4A組1。(1),2,3,4。B組1題。
探究活動(dòng)
圖中找錯(cuò)
你能找出(圖1)與(圖2)的錯(cuò)誤所在嗎?
在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線。
提示:在圖1中,連結(jié)PC、PD,則PC、PD都是圓的直徑,從圓上一點(diǎn)只能作一條直徑,所以此圖是一張錯(cuò)圖,點(diǎn)O應(yīng)在圓上。
在圖2中,設(shè)P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
將②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3應(yīng)重合,故圖2是錯(cuò)誤的。
【初三數(shù)學(xué)切線長(zhǎng)定理教案】相關(guān)文章:
勾股定理的逆定理說(shuō)課稿12-04
勾股定理的逆定理說(shuō)課稿4篇12-04
正弦定理教學(xué)反思12-23
《勾股定理逆定理》的優(yōu)秀教學(xué)反思(精選5篇)12-28
高中數(shù)學(xué)《二項(xiàng)式定理》教學(xué)反思范文12-23
初三數(shù)學(xué)反思范文12-26
初三數(shù)學(xué)教學(xué)總結(jié)06-08
數(shù)學(xué)花園教案12-29