1. <rp id="zsypk"></rp>

      2. 《二次函數(shù)》教案

        時(shí)間:2022-03-02 11:19:24 教案 我要投稿

        《二次函數(shù)》教案

          作為一名老師,通常需要準(zhǔn)備好一份教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么優(yōu)秀的教案是什么樣的呢?以下是小編整理的《二次函數(shù)》教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

        《二次函數(shù)》教案

        《二次函數(shù)》教案1

          學(xué)習(xí)目標(biāo):

          1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

          2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。

          3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運(yùn)用能力

          學(xué)習(xí)重點(diǎn):

          能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

          能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。

          學(xué)習(xí)難點(diǎn):

          能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

          學(xué)習(xí)過程:

          一、學(xué)前準(zhǔn)備

          函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價(jià)與購買數(shù)量之間的關(guān)系如下:

          x(千克) 0 0。5 1 1。5 2 2。5 3

          y(元) 0 1 2 3 4 5 6

          這是售貨員為了便于計(jì)價(jià),常常制作這種表示售價(jià)與數(shù)量關(guān)系的表,即用表格表示函數(shù)。用表達(dá)式和圖象法來表示函數(shù)的情形我們更熟悉。這節(jié)課我們不僅要掌握三種表示方式,而且要體會(huì)三種方式之間的聯(lián)系與各自不同的特點(diǎn),在什么情況下用哪一種方式更好?

          二、探究活動(dòng)

         。ㄒ唬┖献魈骄浚

          矩形的周長是20cm,設(shè)它一邊長為 ,面積為 cm2。 變化的規(guī)律是什么?你能分別用函數(shù)表達(dá)式、表格和圖象表示出來嗎?

          交流完成:

          (1)一邊長為x cm,則另一邊長為 cm,所以面積為: 用函數(shù)表達(dá)式表示: =________________________________。

         。2) 表格表示:

          1 2 3 4 5 6 7 8 9

          10—

         。3)畫出圖象

          討論:函數(shù)的圖象在第一象限,可是我們知道開口向下的拋物線可以到達(dá)第四象限和第三象限,思考原因

         。ǘ┳h一議

         。1)在上述問題中,自變量x的取值范圍是什么?

         。2)當(dāng)x取何值時(shí),長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請(qǐng)你描述一下y隨x的變化而變化的情況。

          點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請(qǐng)大家互相交流。

          (1)因?yàn)閤是邊長,所以x應(yīng)取 數(shù),即x 0,又另一邊長(10—x)也應(yīng)大于 ,即10—x 0,所以x 10,這兩個(gè)條件應(yīng)該同時(shí)滿足,所以x的取值范圍是 。

         。2)當(dāng)x取何值時(shí),長方形的面積最大,就是求自變量取何值時(shí),函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=— 時(shí),函數(shù)y有最大值y最大= 。當(dāng)x= 時(shí),長方形的面積最大,最大面積是25cm2。

          可以通過觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。。

         。ㄈ┳鲆蛔觯簩W(xué)生獨(dú)立思考完成P62,P63的函數(shù)表達(dá)式,表格,圖象問題

         。1)用函數(shù)表達(dá)式表示:y=________。

          (2)用表格表示:

         。3)用圖象表示:

          三、學(xué)習(xí)體會(huì)

          本節(jié)課你有哪些收獲?你還有哪些疑問?

          四、自我測(cè)試

          1、把長1。6米的鐵絲圍成長方形ABCD,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時(shí),所取的值是( )

          A 0。5 B 0。4 C 0。3 D 0。6

          2、兩個(gè)數(shù)的和為6,這兩個(gè)數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。

          3、把一根長120cm的鐵絲分為兩部分,每一部分均彎曲成一個(gè)正方形,它們的面積和是多少?它們的面積和的最小值是多少?

          (選作題)邊長為12的正方形鐵片,中間剪去一個(gè)邊長為x(cm)的小正方形鐵片,剩下的四方框鐵片的面積y(cm2)與x(cm)之間的函數(shù)表達(dá)式為

        《二次函數(shù)》教案2

          二次函數(shù)的應(yīng)用

          教學(xué)設(shè)計(jì)思想:本節(jié)主要研究的是與二次函數(shù)有關(guān)的實(shí)際問題,重點(diǎn)是實(shí)際應(yīng)用題,在教學(xué)過程中讓學(xué)生運(yùn)用二次函數(shù)的知識(shí)分析問題、解決問題,在運(yùn)用中體會(huì)二次函數(shù)的實(shí)際意義。二次函數(shù)與一元二次方程、一元二次不等式有密切聯(lián)系,在學(xué)習(xí)過程中應(yīng)把二次函數(shù)與之有關(guān)知識(shí)聯(lián)系起來,融會(huì)貫通,使學(xué)生的認(rèn)識(shí)更加深刻。另外,在利用圖像法解方程時(shí),圖像應(yīng)畫得準(zhǔn)確一些,使求得的解更準(zhǔn)確,在求解過程中體會(huì)數(shù)形結(jié)合的思想。

          教學(xué)目標(biāo):

          1.知識(shí)與技能

          會(huì)運(yùn)用二次函數(shù)計(jì)其圖像的知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題。

          2.過程與方法

          通過本節(jié)內(nèi)容的學(xué)習(xí),提高自主探索、團(tuán)結(jié)合作的能力,在運(yùn)用知識(shí)解決問題中體會(huì)二次函數(shù)的應(yīng)用意義及數(shù)學(xué)轉(zhuǎn)化思想。

          3.情感、態(tài)度與價(jià)值觀

          通過學(xué)生之間的討論、交流和探索,建立合作意識(shí)和提高探索能力,激發(fā)學(xué)習(xí)的興趣和欲望。

          教學(xué)重點(diǎn):解決與二次函數(shù)有關(guān)的實(shí)際應(yīng)用題。

          教學(xué)難點(diǎn):二次函數(shù)的應(yīng)用。

          教學(xué)媒體:幻燈片,計(jì)算器。

          教學(xué)安排:3課時(shí)。

          教學(xué)方法:小組討論,探究式。

          教學(xué)過程:

          第一課時(shí):

         、.情景導(dǎo)入:

          師:由二次函數(shù)的一般形式y(tǒng)= (a0),你會(huì)有什么聯(lián)想?

          生:老師,我想到了一元二次方程的一般形式 (a0)。

          師:不錯(cuò),正因?yàn)槿绱耍袝r(shí)我們就將二次函數(shù)的有關(guān)問題轉(zhuǎn)化為一元二次方程的問題來解決。

          現(xiàn)在大家來做下面這兩道題:(幻燈片顯示)

          1.解方程 。

          2.畫出二次函數(shù)y= 的圖像。

          教師找兩個(gè)學(xué)生解答,作為板書。

         、.新課講授

          同學(xué)們思考下面的問題,可以共同討論:

          1.二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)是什么?它與方程 的根有什么關(guān)系?

          2.如果方程 (a0)有實(shí)數(shù)根,那么它的根和二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)有什么關(guān)系?

          生甲:老師,由畫出的圖像可以看出與x軸交點(diǎn)的橫坐標(biāo)是-1、2;方程的兩個(gè)根是-1、2,我們發(fā)現(xiàn)方程的兩個(gè)解正好是圖像與x軸交點(diǎn)的橫坐標(biāo)。

          生乙:我們經(jīng)過討論,認(rèn)為如果方程 (a0)有實(shí)數(shù)根,那么它的根等于二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)。

          師:說的很好;

          教師總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根。

          師:我們知道方程的兩個(gè)解正好是二次函數(shù)圖像與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),那么二次函數(shù)圖像與x軸的交點(diǎn)問題可以轉(zhuǎn)化為一元二次方程的根的問題,我們共同研究下面問題。

          [學(xué)法]:通過實(shí)例,體會(huì)二次函數(shù)與一元二次方程的關(guān)系,解一元二次方程實(shí)質(zhì)上就是求二次函數(shù)為0的自變量x的取值,反映在圖像上就是求拋物線與x軸交點(diǎn)的橫坐標(biāo)。

          問題:已知二次函數(shù)y= 。

          (1)觀察這個(gè)函數(shù)的圖像(圖34-9),一元二次方程 =0的兩個(gè)根分別在哪兩個(gè)整數(shù)之間?

          (2)①由在0至1范圍內(nèi)的x值所對(duì)應(yīng)的y值(見下表),你能說出一元二次方程 =0精確到十分位的正根嗎?

          x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

          y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

         、谟稍0.6至0.7范圍內(nèi)的x值所對(duì)應(yīng)的y值(見下表),你能說出一元二次方程 =0精確到百分位的正根嗎?

          x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

          y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

          (3)請(qǐng)仿照上面的方法,求出一元二次方程 =0的另一個(gè)精確到十分位的根。

          (4)請(qǐng)利用一元二次方程的求根公式解方程 =0,并檢驗(yàn)上面求出的近似解。

          第一問很簡單,可以請(qǐng)一名同學(xué)來回答這個(gè)問題。

          生:一個(gè)根在(-2,-1)之間,另一個(gè)在(0,1)之間;根據(jù)上面我們得出的結(jié)論。

          師:回答的很正確;我們知道圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程的根,所以我們可以通過觀看圖象就能說出方程的兩個(gè)根。現(xiàn)在我們共同解答第(2)問。

          教師分析:我們知道方程的一個(gè)根在(0,1)之間,那么我們觀看(0,1)這個(gè)區(qū)間的圖像,y值是隨著x值的增大而不斷增大的,y值也是從負(fù)數(shù)過渡到正數(shù),而當(dāng)y=0時(shí)所對(duì)應(yīng)的x值就是方程的根。現(xiàn)在我們要求的是方程的近似解,那么同學(xué)們想一想,答案是什么呢?

          生:通過列表可以看出,在(0.6,0.7)范圍內(nèi),y值有-0.04至0.19,如果方程精確到十分位的正根,x應(yīng)該是0.6。

          類似的,我們得出方程精確到百分位的正根是0.62。

          對(duì)于第三問,教師可以讓學(xué)生自己動(dòng)手解答,教師在下面巡視,觀察其中發(fā)現(xiàn)的問題。

          最后師生共同利用求根公式,驗(yàn)證求出的近似解。

          教師總結(jié):我們發(fā)現(xiàn),當(dāng)二次函數(shù) (a0)的圖像與x軸有交點(diǎn)時(shí),根據(jù)圖像與x軸的交點(diǎn),就可以確定一元二次方程 的根在哪兩個(gè)連續(xù)整數(shù)之間。為了得到更精確的近似解,對(duì)在這兩個(gè)連續(xù)整數(shù)之間的x的值進(jìn)行細(xì)分,并求出相應(yīng)得y值,列出表格,這樣就可以得到一元二次方程 所要求的精確度的近似解。

         、.練習(xí)

          已知一個(gè)矩形的長比寬多3m,面積為6 。求這個(gè)矩形的長(精確到十分位)。

          板書設(shè)計(jì):

          二次函數(shù)的應(yīng)用(1)

          一、導(dǎo)入 總結(jié):

          二、新課講授 三、練習(xí)

          第二課時(shí):

          師:在我們的實(shí)際生活中你還遇到過哪些運(yùn)用二次函數(shù)的實(shí)例?

          生:老師,我見過好多。如周長固定時(shí)長方形的面積與它的長之間的關(guān)系:圓的面積與它的直徑之間的關(guān)系等。

          師:好,看這樣一個(gè)問題你能否解決:

          活動(dòng)1:如圖34-10,張伯伯準(zhǔn)備利用現(xiàn)有的一面墻和40m長的籬笆,把墻外的空地圍成四個(gè)相連且面積相等的矩形養(yǎng)兔場(chǎng)。

          回答下面的問題:

          1.設(shè)每個(gè)小矩形一邊的長為xm,試用x表示小矩形的另一邊的長。

          2.設(shè)四個(gè)小矩形的總面積為y ,請(qǐng)寫出用x表示y的函數(shù)表達(dá)式。

          3.你能利用公式求出所得函數(shù)的圖像的頂點(diǎn)坐標(biāo),并說出y的最大值嗎?

          4.你能畫出這個(gè)函數(shù)的圖像,并借助圖像說出y的最大值嗎?

          學(xué)生思考,并小組討論。

          解:已知周長為40m,一邊長為xm,看圖知,另一邊長為 m。

          由面積公式得 y= (x )

          化簡得 y=

          代入頂點(diǎn)坐標(biāo)公式,得頂點(diǎn)坐標(biāo)x=4,y=5。y的最大值為5。

          畫函數(shù)圖像:

          通過圖像,我們知道y的最大值為5。

          師:通過上面這個(gè)例題,我們能總結(jié)出幾種求y的最值得方法呢?

          生:兩種;一種是畫函數(shù)圖像,觀察最高(低)點(diǎn),可以得到函數(shù)的最值;另外一種可以利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算最值。

          師:這位同學(xué)回答的很好,看來同學(xué)們是都理解了,也知道如何求函數(shù)的最值。

          總結(jié):由此可以看出,在利用二次函數(shù)的圖像和性質(zhì)解決實(shí)際問題時(shí),常常需要根據(jù)條件建立二次函數(shù)的表達(dá)式,在求最大(或最小)值時(shí),可以采取如下的方法:

          (1)畫出函數(shù)的圖像,觀察圖像的最高(或最低)點(diǎn),就可以得到函數(shù)的最大(或最小)值。

          (2)依照二次函數(shù)的性質(zhì),判斷該二次函數(shù)的開口方向,進(jìn)而確定它有最大值還是最小值;再利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算出函數(shù)的最大(或最小)值。

          師:現(xiàn)在利用我們前面所學(xué)的知識(shí),解決實(shí)際問題。

          活動(dòng)2:如圖34-11,已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,

          (1)AC=______;

          (2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達(dá)式為S=_____.

          (3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?

          (4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置?

          教師講解:二次函數(shù) 進(jìn)行配方為y= ,當(dāng)a0時(shí),拋物線開口向上,此時(shí)當(dāng)x= 時(shí), ;當(dāng)a0時(shí),拋物線開口向下,此時(shí)當(dāng)x= 時(shí), 。對(duì)于本題來說,自變量x的最值范圍受實(shí)際條件的制約,應(yīng)為02。此時(shí)y相應(yīng)的就有最大值和最小值了。通過畫出圖像,可以清楚地看到y(tǒng)的最大值和最小值以及此時(shí)x的取值情況。在作圖像時(shí)一定要準(zhǔn)確認(rèn)真,同時(shí)還要考慮到x的取值范圍。

          解答過程(板書)

          解:(1)當(dāng)BC=x時(shí),AC=2-x(02)。

          (2)S△CDE= ,S△BFG= ,

          因此,S= + =2 -4x+4=2 +2,

          畫出函數(shù)S= +2(02)的圖像,如圖34-4-3。

          (3)由圖像可知:當(dāng)x=1時(shí), ;當(dāng)x=0或x=2時(shí), 。

          (4)當(dāng)x=1時(shí),C點(diǎn)恰好在AB的中點(diǎn)上。

          當(dāng)x=0時(shí),C點(diǎn)恰好在B處。

          當(dāng)x=2時(shí),C點(diǎn)恰好在A處。

          [教法]:在利用函數(shù)求極值問題,一定要考慮本題的實(shí)際意義,弄明白自變量的取值范圍。在畫圖像時(shí),在自變量允許取得范圍內(nèi)畫。

          練習(xí):

          如圖,正方形ABCD的邊長為4,P是邊BC上一點(diǎn),QPAP,并且交DC與點(diǎn)Q。

          (1)Rt△ABP與Rt△PCQ相似嗎?為什么?

          (2)當(dāng)點(diǎn)P在什么位置時(shí),Rt△ADQ的面積最小?最小面積是多少?

          小結(jié):利用二次函數(shù)的增減性,結(jié)合自變量的取值范圍,則可求某些實(shí)際問題中的極值,求極值時(shí)可把 配方為y= 的形式。

          板書設(shè)計(jì):

          二次函數(shù)的應(yīng)用(2)

          活動(dòng)1: 總結(jié)方法:

          活動(dòng)2: 練習(xí):

          小結(jié):

          第三課時(shí):

          我們這部分學(xué)習(xí)的是二次函數(shù)的應(yīng)用,在解決實(shí)際問題時(shí),常常需要把二次函數(shù)問題轉(zhuǎn)化為方程的問題。

          師:在日常生活中,有哪些量之間的關(guān)系是二次函數(shù)關(guān)系?大家觀看下面的圖片。

          (幻燈片顯示交通事故、緊急剎車)

          師:你知道兩輛車在行駛時(shí)為什么要保持一定的距離嗎?

          學(xué)生思考,討論。

          師:汽車在行駛中,由于慣性作用,剎車后還要向前滑行一段距離才能停住,這段距離叫做剎車距離。剎車距離是分析、處理道路交通事故的一個(gè)重要原因。

          請(qǐng)看下面一個(gè)道路交通事故案例:

          甲、乙兩車在限速為40km/h的濕滑彎道上相向而行,待望見對(duì)方。同時(shí)剎車時(shí)已經(jīng)晚了,兩車還是相撞了。事后經(jīng)現(xiàn)場(chǎng)勘查,測(cè)得甲車的剎車距離是12m,乙車的剎車距離超過10m,但小于12m。根據(jù)有關(guān)資料,在這樣的濕滑路面上,甲車的剎車距離S甲(m)與車速x(km/h)之間的關(guān)系為S甲=0.1x+0.01x2,乙車的剎車距離S乙(m)與車速x(km/h)之間的關(guān)系為S乙= 。

          教師提問:1.你知道甲車剎車前的行駛速度嗎?甲車是否違章超速?

          2.你知道乙車剎車前的行駛速度在什么范圍內(nèi)嗎?乙車是否違章超速?

          學(xué)生思考!教師引導(dǎo)。

          對(duì)于二次函數(shù)S甲=0.1x+0.01x2:

          (1)當(dāng)S甲=12時(shí),我們得到一元二次方程0.1x+0.01x2=12。請(qǐng)談?wù)勥@個(gè)一元二次方程這個(gè)一元二次方程的實(shí)際意義。

          (2)當(dāng)S甲=11時(shí),不經(jīng)過計(jì)算,你能說明兩車相撞的主要責(zé)任者是誰嗎?

          (3)由乙車的剎車距離比甲車的剎車距離短,就一定能說明事故責(zé)任者是甲車嗎?為什么?

          生甲:我們能知道甲車剎車前的行駛速度,知道甲車的剎車距離,又知道剎車距離與車速的關(guān)系式,所以車速很容易求出,求得x=30km,小于限速40km/h,故甲車沒有違章超速。

          生乙:同樣,知道乙車剎車前的行駛速度,知道乙車的剎車距離的取值范圍,又知道剎車距離與車速的關(guān)系式,求得x在40km/h與48km/h(不包含40km/h)之間?梢娨臆囘`章超速了。

          同學(xué)們,從這個(gè)事例當(dāng)中我們可以體會(huì)到,如果二次函數(shù)y= (a0)的某一函數(shù)值y=M。就可利用一元二次方程 =M,確定它所對(duì)應(yīng)得x值,這樣,就把二次函數(shù)與一元二次方程緊密地聯(lián)系起來了。

          下面看下面的這道例題:

          當(dāng)路況良好時(shí),在干燥的路面上,汽車的剎車距離s與車速v之間的關(guān)系如下表所示:

          v/(km/h) 40 60 80 100 120

          s/m 2 4.2 7.2 11 15.6

          (1)在平面直角坐標(biāo)系中描出每對(duì)(v,s)所對(duì)應(yīng)的點(diǎn),并用光滑的曲線順次連結(jié)各點(diǎn)。

          (2)利用圖像驗(yàn)證剎車距離s(m)與車速v(km/h)是否有如下關(guān)系:

          (3)求當(dāng)s=9m時(shí)的車速v。

          學(xué)生思考,親自動(dòng)手,提高學(xué)生自主學(xué)習(xí)的能力。

          教師提問,學(xué)生回答正確答案,教師再進(jìn)行講解。

          課上練習(xí):

          某產(chǎn)品的成本是20元/件,在試銷階段,當(dāng)產(chǎn)品的售價(jià)為x元/件時(shí),日銷量為(200-x)件。

          (1)寫出用售價(jià)x(元/件)表示每日的銷售利潤y(元)的表達(dá)式。

          (2)當(dāng)日銷量利潤是1500元時(shí),產(chǎn)品的售價(jià)是多少?日銷量是多少件?

          (3)當(dāng)售價(jià)定為多少時(shí),日銷量利潤最大?最大日銷量利潤是多少?

          課堂小結(jié):本節(jié)課主要是利用函數(shù)求極值的問題,解決此類問題時(shí),一定要考慮到本題的實(shí)際意義,弄明白自變量的取值范圍。在畫圖像時(shí),在自變量允許取的范圍內(nèi)畫。

          板書設(shè)計(jì):

          二次函數(shù)的應(yīng)用(3)

          一、案例 二、例題

          分析: 練習(xí):

          總結(jié):

          數(shù)學(xué)網(wǎng)

        《二次函數(shù)》教案3

          教學(xué)設(shè)計(jì)

          一 教學(xué)設(shè)計(jì)思路

          通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進(jìn)一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。

          二 教學(xué)目標(biāo)

          1 知識(shí)與技能

          (1).經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系?偨Y(jié)出二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,表述何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.

          (2).會(huì)利用圖象法求一元二次方程的近似解。

          2 過程與方法

          經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

          三 情感態(tài)度價(jià)值觀

          通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況培養(yǎng)學(xué)生自主探索意識(shí),從中體會(huì)事物普遍聯(lián)系的觀點(diǎn),進(jìn)一步體會(huì)數(shù)形結(jié)合思想.

          四 教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):方程與函數(shù)之間的聯(lián)系,會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解。

          難點(diǎn):二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。

          五 教學(xué)方法

          討論探索法

          六 教學(xué)過程設(shè)計(jì)

          (一)問題的提出與解決

          問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時(shí),球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有關(guān)系

          h=20t5t2。

          考慮以下問題

          (1)球的飛行高度能否達(dá)到15m?如能,需要多少飛行時(shí)間?

          (2)球的飛行高度能否達(dá)到20m?如能,需要多少飛行時(shí)間?

          (3)球的飛行高度能否達(dá)到20.5m?為什么?

          (4)球從飛出到落地要用多少時(shí)間?

          分析:由于球的飛行高度h與飛行時(shí)間t的關(guān)系是二次函數(shù)

          h=20t-5t2。

          所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實(shí)際的解,則說明球的飛行高度可以達(dá)到問題中h的值:否則,說明球的飛行高度不能達(dá)到問題中h的值。

          解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

          當(dāng)球飛行1s和3s時(shí),它的高度為15m。

          (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

          當(dāng)球飛行2s時(shí),它的高度為20m。

          (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

          因?yàn)?-4)2-44.10。所以方程無解。球的飛行高度達(dá)不到20.5m。

          (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

          當(dāng)球飛行0s和4s時(shí),它的高度為0m,即0s時(shí)球從地面飛出。4s時(shí)球落回地面。

          由學(xué)生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?

          例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。

          分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。

          一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。

          (二)問題的討論

          二次函數(shù)(1)y=x2+x-2;

          (2) y=x2-6x+9;

          (3) y=x2-x+0。

          的圖象如圖26.2-2所示。

          (1)以上二次函數(shù)的圖象與x軸有公共點(diǎn)嗎?如果有,有多少個(gè)交點(diǎn),公共點(diǎn)的橫坐標(biāo)是多少?

          (2)當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是多少?由此,你能得出相應(yīng)的一元二次方程的根嗎?

          先畫出以上二次函數(shù)的圖象,由圖像學(xué)生展開討論,在老師的引導(dǎo)下回答以上的問題。

          可以看出:

          (1)拋物線y=x2+x-2與x軸有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)是-2,1。當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。

          (2)拋物線y=x2-6x+9與x軸有一個(gè)公共點(diǎn),這點(diǎn)的橫坐標(biāo)是3。當(dāng)x=3時(shí),函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個(gè)相等的實(shí)數(shù)根3。

          (3)拋物線y=x2-x+1與x軸沒有公共點(diǎn), 由此可知,方程x2-x+1=0沒有實(shí)數(shù)根。

          總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根。

          (三)歸納

          一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,

          (1)如果拋物線y=ax2+bx+c與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是x0,那么當(dāng)x=x0時(shí),函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個(gè)根。

          (2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。

          由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。

          (四)例題

          例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1)。

          解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點(diǎn)的橫坐標(biāo)大約是-0.7,2.7。

          所以方程x2-2x-2=0的實(shí)數(shù)根為x1-0.7,x22.7。

          七 小結(jié)

          二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。

          。

          八 板書設(shè)計(jì)

          用函數(shù)觀點(diǎn)看一元二次方程

          拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系

          例題

        《二次函數(shù)》教案4

          教學(xué)目標(biāo):

          利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。

          利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡單的實(shí)際問題。

          在探索中體驗(yàn)數(shù)學(xué)來源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。

          教學(xué)重點(diǎn)和難點(diǎn):

          運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。

          教學(xué)過程:

         。ㄒ唬┮耄

          分組復(fù)習(xí)舊知。

          探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?

          可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:

         。1)如何畫圖

         。2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)

         。3)所形成的三角形以及四邊形的面積

         。4)對(duì)稱軸

          從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。

         。ǘ┬率冢

          1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE= SABC。

          再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。

          再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。

          2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。

          例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式。

         。ㄈ┨岣呔毩(xí)

          根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:

          讓班級(jí)中的上科院小院士來簡要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。

          讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。

         。ㄋ模┳寣W(xué)生討論小結(jié)(略)

         。ㄎ澹┳鳂I(yè)布置

          1、在直角坐標(biāo)平面內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

          (1)求二次函數(shù)的解析式;

         。2)將上述二次函數(shù)圖象沿x軸向右平移2個(gè)單位,設(shè)平移后的圖象與y軸的交點(diǎn)為C,頂點(diǎn)為P,求 POC的面積。

          2、如圖,一個(gè)二次函數(shù)的圖象與直線y= x—1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個(gè)二次函數(shù)的解析式。

          3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對(duì)稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標(biāo)系,如圖2。

         。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;

         。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(備用數(shù)據(jù): ,計(jì)算結(jié)果精確到1米)

        《二次函數(shù)》教案5

          二次函數(shù)的教學(xué)設(shè)計(jì)

          教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊(cè)第108頁

          教學(xué)目標(biāo):

          1。 1。 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;

          2。 2。 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;

          3。 3。 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對(duì)于數(shù)形結(jié)合思想認(rèn)識(shí)。

          教學(xué)重點(diǎn):二次函數(shù)的意義;會(huì)畫二次函數(shù)圖象。

          教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。

          教學(xué)過程設(shè)計(jì):

          一 創(chuàng)設(shè)情景、建模引入

          我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個(gè)例子:

          1。寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式

          答:S=πR2。 ①

          2。寫出用總長為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系

          答:S=L(30-L)=30L-L2 ②

          分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?

          S是否是R、L的一次函數(shù)?

          由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?

          答:二次函數(shù)。

          這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書課題)

          二 歸納抽象、形成概念

          一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,

          那么,y叫做x的二次函數(shù)。

          注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)。

          練習(xí):1。舉例子:請(qǐng)同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。

          2。出難題:請(qǐng)同學(xué)給大家出示一個(gè)函數(shù),請(qǐng)同學(xué)判斷是否是二次函數(shù)。

         。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如:;;; 的形式。)

         。ㄍㄟ^學(xué)生觀察、歸納定義加深對(duì)概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)

          由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。

         。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)

          三 嘗試模仿、鞏固提高

          讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究

          1。 1。 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?

          請(qǐng)同學(xué)們畫出函數(shù)y=x2的圖象。

          (學(xué)生分別畫圖,教師巡視了解情況。)

          2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實(shí)物投影向大家展示,到底哪一個(gè)對(duì)呢?下面師生共同畫出函數(shù)y=x2的圖象。

          解:一、列表:

        x



        -3



        -2



        -1



        0



        1



        2



        3



        Y=x2



        9



        4



        1



        0



        1



        4



        9



          、描點(diǎn)、連線: 按照表格,描出各點(diǎn)。然后用光滑的曲線,按照x(點(diǎn)的橫坐標(biāo))由小到大的順序把各點(diǎn)連結(jié)起來。

          對(duì)照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點(diǎn)注意。

          練習(xí):畫出函數(shù);的圖象(請(qǐng)兩個(gè)同學(xué)板演)

        X



        -3



        -2



        -1



        0



        1



        2



        3



        Y=0。5X2



        4。5



        2



        0。5



        0



        0。5



        02



        4。5



        Y=-X2



        -9



        -4



        -1



        0



        -1



        -4



        -9



          畫好之后教師根據(jù)情況講評(píng),并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。

         。ㄟ@里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會(huì)畫圖象的方法;并及時(shí)安排練習(xí)鞏固剛剛學(xué)到的新知識(shí),通過觀察,感悟拋物線名稱的由來。)

          三 運(yùn)用新知、變式探究

          畫出函數(shù) y=5x2圖象

          學(xué)生在畫圖象的過程當(dāng)中遇到函數(shù)值較大的困難,不知如何是好。

        x



        -0。5



        -0。4



        -0。3



        -0。2



        -0。1



        0



        0。1



        0。2



        0。3



        0。4



        0。5



        Y=5x2



        1。25



        0。8



        0。45



        0。2



        0。05



        0



        0。05



        0。2



        0。45



        0。8



        1。25



          教師出示已畫好的圖象讓學(xué)生觀察

          注意:1。 畫圖象應(yīng)描7個(gè)左右的點(diǎn),描的點(diǎn)越多圖象越準(zhǔn)確。

          2。 自變量X的取值應(yīng)注意關(guān)于Y軸對(duì)稱。

          3。 對(duì)于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分?jǐn)?shù)。

          四。 四。 歸納小結(jié)、延續(xù)探究

          教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進(jìn),互相完善。最終得到如下性質(zhì):

          一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對(duì)稱軸是Y軸,頂點(diǎn)是坐標(biāo)原點(diǎn);當(dāng)a>0時(shí),圖象的開口向上,最低點(diǎn)為(0,0);當(dāng)a<0時(shí),圖象的開口向下,最高點(diǎn)為(0,0)。

          五 回顧反思、總結(jié)收獲

          在這一環(huán)節(jié)中,教師請(qǐng)同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個(gè)個(gè)有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。

         。ㄔ谡麄(gè)一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵(lì)學(xué)生大膽思考,積極嘗試,不怕困難,一個(gè)人完不成,講不透,第二個(gè)人、第三個(gè)人補(bǔ)充,直到完成整個(gè)例題。這樣上課氣氛非;钴S,學(xué)生之間常會(huì)因?yàn)槟硞(gè)觀點(diǎn)的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時(shí)地對(duì)某些觀點(diǎn)作出判斷,或與學(xué)生一同討論。)

        《二次函數(shù)》教案6

          目標(biāo):

          1.使學(xué)生掌握用待定系數(shù)法由已知圖象上一個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)y=ax2的關(guān)系式。

          2. 使學(xué)生掌握用待定系數(shù)法由已知圖象上三個(gè)點(diǎn)的坐標(biāo)求二次函數(shù)的關(guān)系式。

          3.讓學(xué)生體驗(yàn)二次函數(shù)的函數(shù)關(guān)系式的應(yīng)用,提高學(xué)生用數(shù)學(xué)意識(shí)。

          重點(diǎn)難點(diǎn):

          重點(diǎn):已知二次函數(shù)圖象上一個(gè)點(diǎn)的坐標(biāo)或三個(gè)點(diǎn)的坐標(biāo),分別求二次函數(shù)y=ax2、y=ax2+bx+c的關(guān)系式是的重點(diǎn)。

          難點(diǎn):已知圖象上三個(gè)點(diǎn)坐標(biāo)求二次函數(shù)的關(guān)系式是教學(xué)的難點(diǎn)。

          教學(xué)過程:

          一、創(chuàng)設(shè)問題情境

          如圖,某建筑的屋頂設(shè)計(jì)成橫截面為拋物線型(曲線AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫出模板的輪廓線呢?

          分析:為了畫出符合要求的模板,通常要先建立適當(dāng)?shù)闹苯亲鴺?biāo)系,再寫出函數(shù)關(guān)系式,然后根據(jù)這個(gè)關(guān)系式進(jìn)行計(jì)算,放樣畫圖。

          如圖所示,以AB的垂直平分線為y軸,以過點(diǎn)O的y軸的垂線為x軸,建立直角坐標(biāo)系。這時(shí),屋頂?shù)臋M截面所成拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式為: y=ax2 (a<0) (1)

          因?yàn)閥軸垂直平分AB,并交AB于點(diǎn)C,所以CB=AB2 =2(cm),又CO=0.8m,所以點(diǎn)B的坐標(biāo)為(2,-0.8)。

          因?yàn)辄c(diǎn)B在拋物線上,將它的坐標(biāo)代人(1),得 -0.8=a×22 所以a=-0.2

          因此,所求函數(shù)關(guān)系式是y=-0.2x2。

          請(qǐng)同學(xué)們根據(jù)這個(gè)函數(shù)關(guān)系式,畫出模板的輪廓線。

          二、引申拓展

          問題1:能不能以A點(diǎn)為原點(diǎn),AB所在直線為x軸,過點(diǎn)A的x軸的垂線為y軸,建立直角坐標(biāo)系?

          讓學(xué)生了解建立直角坐標(biāo)系的方法不是唯一的,以A點(diǎn)為原點(diǎn),AB所在的直線為x軸,過點(diǎn)A的x軸的垂線為y軸,建立直角坐標(biāo)系也是可行的。

          問題2,若以A點(diǎn)為原點(diǎn),AB所在直線為x軸,過點(diǎn)A的x軸的垂直為y軸,建立直角坐標(biāo)系,你能求出其函數(shù)關(guān)系式嗎?

          分析:按此方法建立直角坐標(biāo)系,則A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(4,0),OC所在直線為拋物線的對(duì)稱軸,所以有AC=CB,AC=2m,O點(diǎn)坐標(biāo)為(2;0.8)。即把問題轉(zhuǎn)化為:已知拋物線過(0,0)、(4,0);(2,0.8)三點(diǎn),求這個(gè)二次函數(shù)的關(guān)系式。

          二次函數(shù)的一般形式是y=ax2+bx+c,求這個(gè)二次函數(shù)的關(guān)系式,跟以前學(xué)過求一次函數(shù)的關(guān)系式一樣,關(guān)鍵是確定o、6、c,已知三點(diǎn)在拋物線上,所以它的坐標(biāo)必須適合所求的函數(shù)關(guān)系式;可列出三個(gè)方程,解此方程組,求出三個(gè)待定系數(shù)。

          解:設(shè)所求的二次函數(shù)關(guān)系式為y=ax2+bx+c。

          因?yàn)镺C所在直線為拋物線的對(duì)稱軸,所以有AC=CB,AC=2m,拱高OC=0.8m,

          所以O(shè)點(diǎn)坐標(biāo)為(2,0.8),A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(4,0)。

          由已知,函數(shù)的圖象過(0,0),可得c=0,又由于其圖象過(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個(gè)方程組,得a=-15b=45 所以,所求的二次函數(shù)的關(guān)系式為y=-15x2+45x。

          問題3:根據(jù)這個(gè)函數(shù)關(guān)系式,畫出模板的輪廓線,其圖象是否與前面所畫圖象相同?

          問題4:比較兩種建立直角坐標(biāo)系的方式,你認(rèn)為哪種建立直角坐標(biāo)系方式能使解決問題來得更簡便?為什么?

          (第一種建立直角坐標(biāo)系能使解決問題來得更簡便,這是因?yàn)樗O(shè)函數(shù)關(guān)系式待定系數(shù)少,所求出的函數(shù)關(guān)系式簡單,相應(yīng)地作圖象也容易)

          請(qǐng)同學(xué)們閱瀆P18例7。

          三、課堂練習(xí): P18練習(xí)1.(1)、(3)2。

          四、綜合運(yùn)用

          例1.如圖所示,求二次函數(shù)的關(guān)系式。

          分析:觀察圖象可知,A點(diǎn)坐標(biāo)是(8,0),C點(diǎn)坐標(biāo)為(0,4)。從圖中可知對(duì)稱軸是直線x=3,由于拋物線是關(guān)于對(duì)稱軸的軸對(duì)稱圖形,所以此拋物線在x軸上的另一交點(diǎn)B的坐標(biāo)是(-2,0),問題轉(zhuǎn)化為已知三點(diǎn)求函數(shù)關(guān)系式。

          解:觀察圖象可知,A、C兩點(diǎn)的坐標(biāo)分別是(8,0)、(0,4),對(duì)稱軸是直線x=3。因?yàn)閷?duì)稱軸是直線x=3,所以B點(diǎn)坐標(biāo)為(-2,0)。

          設(shè)所求二次函數(shù)為y=ax2+bx+c,由已知,這個(gè)圖象經(jīng)過點(diǎn)(0,4),可以得到c=4,又由于其圖象過(8,0)、(-2,0)兩點(diǎn),可以得到64a+8b=-44a-2b=-4 解這個(gè)方程組,得a=-14b=32

          所以,所求二次函數(shù)的關(guān)系式是y=-14x2+32x+4

          練習(xí): 一條拋物線y=ax2+bx+c經(jīng)過點(diǎn)(0,0)與(12,0),最高點(diǎn)的縱坐標(biāo)是3,求這條拋物線的解析式。

          五、小結(jié):

          二次函數(shù)的關(guān)系式有幾種形式,函數(shù)的關(guān)系式y(tǒng)=ax2+bx+c就是其中一種常見的形式。二次函數(shù)關(guān)系式的確定,關(guān)鍵在于求出三個(gè)待定系數(shù)a、b、c,由于已知三點(diǎn)坐標(biāo)必須適合所求的函數(shù)關(guān)系式,故可列出三個(gè)方程,求出三個(gè)待定系數(shù)。

          六、作業(yè)

          1.P19習(xí)題 26.2 4.(1)、(3)、5。

          2.選用課時(shí)作業(yè)優(yōu)化設(shè)計(jì),

        《二次函數(shù)》教案7

          一、教學(xué)目標(biāo):

          1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

          2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.

          3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

          二、教學(xué)重點(diǎn)、難點(diǎn):

          教學(xué)重點(diǎn):

          1.體會(huì)方程與函數(shù)之間的聯(lián)系。

          2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

          教學(xué)難點(diǎn):

          1.探索方程與函數(shù)之間關(guān)系的過程。

          2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。

          三、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流

          四:教具、學(xué)具:課件

          五、教學(xué)媒體:計(jì)算機(jī)、實(shí)物投影。

          六、教學(xué)過程:

          檢查預(yù)習(xí) 引出課題

          預(yù)習(xí)作業(yè):

          1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

          2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

          師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。

          教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。

          設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。

        《二次函數(shù)》教案8

          本節(jié)課在二次函數(shù)y=ax2和y=ax2+c的圖象的基礎(chǔ)上,進(jìn)一步研究y=a(x-h)2和y=a(x-h)2+k的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時(shí)對(duì)二次函數(shù)的研究,經(jīng)歷了從簡單到復(fù)雜,從特殊到一般的過程:先是從y=x2開始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合學(xué)生的認(rèn)知特點(diǎn),體會(huì)建立二次函數(shù)對(duì)稱軸和頂點(diǎn)坐標(biāo)公式的必要性.

          在教學(xué)中,主要是讓學(xué)生自己動(dòng)手畫圖象,通過自己的觀察、交流、對(duì)比、概括和反思[

          等探索活動(dòng),使學(xué)生達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問題.

          2.4二次函數(shù)y=ax2+bx+c的圖象(一)

          教學(xué)目標(biāo)

          (一)教學(xué)知識(shí)點(diǎn)[

          1.能夠作出函數(shù)y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h,k對(duì)二次函數(shù)圖象的影響.

          2.能夠正確說出y=a(x-h)2+k圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).

          (二)能力訓(xùn)練要求

          1.通過學(xué)生自己的探索活動(dòng),對(duì)二次函數(shù)性質(zhì)的研究,達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.

          2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.

          (三)情感與價(jià)值觀要求

          1.經(jīng)歷觀察、猜想、總結(jié)等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點(diǎn).

          2.讓學(xué)生學(xué)會(huì)與人合作,并能與他人交流思維的過程和結(jié)果.

          教學(xué)重點(diǎn)

          1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的作法和性質(zhì)的過程.

          2.能夠作出y=a(x-h)2和y=a(x-h)2+k的'圖象,并能理解它與y=ax2的圖象的關(guān)系,理解a、h、k對(duì)二次函數(shù)圖象的影響.

          3.能夠正確說出y=a(x-h)2+k圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).

          教學(xué)難點(diǎn)

          能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能夠理解它與y=ax2的圖象的關(guān)系,理解a、h、k對(duì)二次函數(shù)圖象的影響.

          教學(xué)方法

          探索比較總結(jié)法.

          教具準(zhǔn)備

          投影片四張

          第一張:(記作2.4.1 A)

          第二張:(記作2.4.1 B)

          第三張:(記作2.4.1 C)

          第四張:(記作2.4.1 D)

          教學(xué)過程

          Ⅰ.創(chuàng)設(shè)問題情境、引入新課

          [師]我們已學(xué)習(xí)過兩種類型的二次函數(shù),即y=ax2與y=ax2+c,知道它們都是軸對(duì)稱圖形,對(duì)稱軸都是y軸,有最大值或最小值.頂點(diǎn)都是原點(diǎn).還知道y=ax2+c的圖象是函數(shù)y=ax2的圖象經(jīng)過上下移動(dòng)得到的,那么y=ax2的圖象能否左右移動(dòng)呢?它左右移動(dòng)后又會(huì)得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來研究有關(guān)問題.

         、.新課講解

          一、比較函數(shù)y=3x2與y=3(X-1)2的圖象的性質(zhì).

          投影片:(2.4 A)

          (1)完成下表,并比較3x2和3(x-1)2的值,

          它們之間有什么關(guān)系?

          X -3 -2 -1 0 1 2 3 4

          3x2

          3(x-1)2

          (2)在下圖中作出二次函數(shù)y=3(x-1)2的圖象.你是怎樣作的?

          (3)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對(duì)稱圖形嗎?它的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?

          (4)x取哪些值時(shí),函數(shù)y=3(x-1)2的值隨x值的增大而增大?x取哪些值時(shí),函數(shù)y=3(x-1)2的值隨x值的增大而減小?

          [師]請(qǐng)大家先自己填表,畫圖象,思考每一個(gè)問題,然后互相討論,總結(jié).

          [生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27.

          (2)用描點(diǎn)法作出y=3(x-1)2的圖象,如上圖.

          (3)二次函數(shù))y=3(x-1)2的圖象與y=3x2的圖象形狀相同,開口方向也相同,但對(duì)稱軸和頂點(diǎn)坐標(biāo)不同,y=3(x-1)2的圖象的對(duì)稱軸是直線x=1,頂點(diǎn)坐標(biāo)是(1,0).

          (4)當(dāng)x1時(shí),函數(shù)y=3(x-1)2的值隨x值的增大而增大,x1時(shí),y=3(x-1)2的值隨x值的增大而減小.

          [師]能否用移動(dòng)的觀點(diǎn)說明函數(shù)y=3x2與y=3(x-1)2的圖象之間的關(guān)系呢?

          [生]y=3(x-1)2的圖象可以看成是函數(shù))y=3x2的圖象整體向右平移得到的.

          [師]能像上節(jié)課那樣比較它們圖象的性質(zhì)嗎?

          [生]相同點(diǎn):

          a.圖象都中拋物線,且形狀相同,開口方向相同.

          b. 都是軸對(duì)稱圖形.

          c.都有最小值,最小值都為0.

          d.在對(duì)稱軸左側(cè),y都隨x的增大而減小.在對(duì)稱軸右側(cè),y都隨x的增大而增大.

          不同點(diǎn):

          a.對(duì)稱軸不同,y=3x2的對(duì)稱軸是y軸y=3(x-1)2的對(duì)稱軸是x=1.

          b. 它們的位置不問.[來源:Www.zk5u.com]

          c. 它們的頂點(diǎn)坐標(biāo)不同. y=3x2的頂點(diǎn)坐標(biāo)為(0,0),y=3(x-1)2的頂點(diǎn)坐標(biāo)為(1,0),

          聯(lián)系:

          把函數(shù)y=3x2的圖象向右移動(dòng)一個(gè)單位,則得到函數(shù)y=3(x-1)2的圖像.

          二、做一做

          投影片:(2.4.1 B)

          在同一直角坐標(biāo)系中作出函數(shù)y=3(x-1)2和y=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì).

          [生]圖象如下

          它們的圖象的性質(zhì)比較如下:

          相同點(diǎn):

          a.圖象都是拋物線,且形狀相同,開口方向相同.

          b. 都足軸對(duì)稱圖形,對(duì)稱軸都為x=1.

          c. 在對(duì)稱軸左側(cè),y都隨x的增大而減小,在對(duì)稱軸右側(cè),y都隨x的增大而增大.

          不同點(diǎn):

          a.它們的頂點(diǎn)不同,最值也不同.y=3(x-1)2的頂點(diǎn)坐標(biāo)為(1.0),最小值為0.y=3(x-1)2+2的頂點(diǎn)坐標(biāo)為(1,2),最小值為2.

          b. 它們的位置不同.

          聯(lián)系:

          把函數(shù)y=3(x-1)2的圖象向上平移2個(gè)單位,就得到了函數(shù)y=3(x-1)2+2的圖象.

          三、總結(jié)函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象之間的關(guān)系.

          [師]通過上畫的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎?

          [生]可以.

          二次函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象都是拋物線.并且形狀相同,開口方向相同,只是位置不同,頂點(diǎn)不同,對(duì)稱軸不同,將函數(shù)y=3x2的圖象向右平移1個(gè)單位,就得到函數(shù)y=3(x-1)2的圖象;再向上平移2個(gè)單位,就得到函數(shù)y=3(x-1)2+2的圖象.

          [師]大家還記得y=3x2與y=3x2-1的圖象之間的關(guān)系嗎?

          [生]記得,把函數(shù)y=3x2向下平移1個(gè)平位,就得到函數(shù)y=3x2-1的圖象.

          [師]你能系統(tǒng)總結(jié)一下嗎?

          [生]將函數(shù)y=3x2的圖象向下移動(dòng)1個(gè)單位,就得到了函數(shù)y=3x2-1的圖象,向上移動(dòng)1個(gè)單位,就得到函數(shù)y=3x2+1的圖象;將y=3x2的圖象向右平移動(dòng)1個(gè)單位,就得到函數(shù)y=3(x-1)2的圖象:向左移動(dòng)1個(gè)單位,就得到函數(shù)y=3(x+1)2的圖象;由函數(shù)y=3x2向右平移1個(gè)單位、再向上平移2個(gè)單位,就得到函數(shù)y=3(x-1)2+2的圖象.

          [師]下面我們就一般形式來進(jìn)行總結(jié).

          投影片:(2.4.1 C)

          一般地,平移二次函數(shù)y=ax2的圖象便可得到二次函數(shù)為y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的圖象.

          (1)將y=ax2的圖象上下移動(dòng)便可得到函數(shù)y=ax2+c的圖象,當(dāng)c0時(shí),向上移動(dòng),當(dāng)c0時(shí),向下移動(dòng).

          (2)將函數(shù)y=ax2的圖象左右移動(dòng)便可得到函數(shù)y=a(x-h)2的圖象,當(dāng)h0時(shí),向右移動(dòng),當(dāng)h0時(shí),向左移動(dòng).

          (3)將函數(shù)y=ax2的圖象既上下移,又左右移,便可得到函數(shù)y=a(x-h)+k的圖象.

          因此,這些函數(shù)的圖象都是一條拋物線,它們的開口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo)與a,h,k的值有關(guān).

          下面大家經(jīng)過討論之后,填寫下表:

          y=a(x-h)2+k 開口方向 對(duì)稱軸 頂點(diǎn)坐標(biāo)

          a0

          a0

          四、議一議

          投影片:(2,4.1 D)

          (1)二次函數(shù)y=3(x+1)2的圖象與二次函數(shù)y=3x2的圖象有什么關(guān)系?它是軸對(duì)稱圖形嗎?它的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?

          (2)二次函數(shù)y=-3(x-2)2+4的圖象與二次函數(shù)y=-3x2的圖象有什么關(guān)系?它是軸對(duì)稱圖形嗎?它的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?

          (3)對(duì)于二次函數(shù)y=3(x+1)2,當(dāng)x取哪些值時(shí),y的值隨x值的增大而增大?當(dāng)x取哪些值時(shí),y的值隨x值的增大而減小?二次函數(shù)y=3(x+1)2+4呢?

          [師]在不畫圖象的情況下,你能回答上面的問題嗎?

          [生](1)二次函數(shù)y=3(x+1)2的圖象與y=3x2的圖象形狀相同,開口方向也相同,但對(duì)稱軸和頂點(diǎn)坐標(biāo)不同,y=3(x+1)2的圖象的對(duì)稱軸是直線x=-1,頂點(diǎn)坐標(biāo)是(-1,0).只要將y=3x2的圖象向左平移1個(gè)單位,就可以得到y(tǒng)=3(x+1)2的圖象.

          (2)二次函數(shù)y=-3(x-2)2+4的圖象與y=-3x2的圖象形狀相同,只是位置不同,將函數(shù)y=-3x2的圖象向右平移2個(gè)單位,就得到y(tǒng)=-3(x-2)2的圖象,再向上平移4個(gè)單位,就得到y(tǒng)=-3(x-2)2+4的圖象y=-3(x-2)2+4的圖象的對(duì)稱軸是直線x=2,頂點(diǎn)坐標(biāo)是(2,4).

          (3)對(duì)于二次函數(shù)y=3(x+1)2和y=3(x+1)2+4,它們的對(duì)稱軸都是x=-1,當(dāng)x-1時(shí),y的值隨x值的增大而減小;當(dāng)x-1時(shí),y的值隨x值的增大而增大.

         、.課堂練習(xí)

          隨堂練習(xí)

         、.課時(shí)小結(jié)

          本節(jié)課進(jìn)一步探究了函數(shù)y=3x2與y=3(x-1)2,y=3(x-1)2+2的圖象有什么關(guān)系,對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么這些問題.并作了歸納總結(jié).還能利用這個(gè)結(jié)果對(duì)其他的函數(shù)圖象進(jìn)行討論.

         、.課后作業(yè)

          習(xí)題2.4

          Ⅵ.活動(dòng)與探究

          二次函數(shù)y= (x+2)2-1與y= (x-1)2+2的圖象是由函數(shù)y= x2的圖象怎樣移動(dòng)得到的?它們之間是通過怎樣移動(dòng)得到的?

          解:y= (x+2)2-1的圖象是由y= x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的,y= (x-1)2+2的圖象是由y= x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位得到的.

          y= (x+2)2-1的圖象向右平移3個(gè)單位,再向上平移3個(gè)單位得到y(tǒng)= (x-1)2+2的圖象.

          y= (x-1)2+2的圖象向左平移3個(gè)單位,再向下平移3個(gè)單位得到y(tǒng)= (x+2)2-1的圖象.

          板書設(shè)計(jì)

          4.2.1 二次函數(shù)y=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)y=3x2與y=3(x-1)2的

          圖象和性質(zhì)(投影片2.4.1 A)

          2.做一做(投影片2.4.1 B)

          3.總結(jié)函數(shù)y=3x2,y=3(x-1)2y= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)

          4.議一議(投影片2.4.1 D)

          二、課堂練習(xí)

          1.隨堂練習(xí)

          2.補(bǔ)充練習(xí)

          三、課時(shí)小結(jié)

          四、課后作業(yè)

          備課資料

          參考練習(xí)

          在同一直角坐標(biāo)系內(nèi)作出函數(shù)y=- x2,y=- x2-1,y=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.

          解:圖象略

          它們都是拋物線,且開口方向都向下;對(duì)稱軸分別為y軸y軸,直線x=-1;頂點(diǎn)坐標(biāo)分別為(0,0),(0,-1),(-1,-1).

          y=- x2的圖象向下移動(dòng)1個(gè)單位得到y(tǒng)=- x2-1 的圖象;y=- x2的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)1個(gè)單位,得到y(tǒng)=- (x+1)2-1的圖象.

        《二次函數(shù)》教案9

          教學(xué)目標(biāo):

          會(huì)用待定系數(shù)法求二次函數(shù)的解析式,能結(jié)合二次函數(shù)的圖象掌握二次函數(shù)的性質(zhì),能較熟練地利用函數(shù)的性質(zhì)解決函數(shù)與圓、三角形、四邊形以及方程等知識(shí)相結(jié)合的綜合題。

          重點(diǎn)難點(diǎn):

          重點(diǎn);用待定系數(shù)法求函數(shù)的解析式、運(yùn)用配方法確定二次函數(shù)的特征。

          難點(diǎn):會(huì)運(yùn)用二次函數(shù)知識(shí)解決有關(guān)綜合問題。

          教學(xué)過程:

          一、例題精析,強(qiáng)化練習(xí),剖析知識(shí)點(diǎn)

          用待定系數(shù)法確定二次函數(shù)解析式.

          例:根據(jù)下列條件,求出二次函數(shù)的解析式。

         。1)拋物線y=ax2+bx+c經(jīng)過點(diǎn)(0,1),(1,3),(-1,1)三點(diǎn)。

         。2)拋物線頂點(diǎn)P(-1,-8),且過點(diǎn)A(0,-6)。

          (3)已知二次函數(shù)y=ax2+bx+c的圖象過(3,0),(2,-3)兩點(diǎn),并且以x=1為對(duì)稱軸。

         。4)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過一次函數(shù)y=-3/2x+3的圖象與x軸、y軸的交點(diǎn);且過(1,1),求這個(gè)二次函數(shù)解析式,并把它化為y=a(x-h(huán))2+k的形式。

          學(xué)生活動(dòng):學(xué)生小組討論,題目中的四個(gè)小題應(yīng)選擇什么樣的函數(shù)解析式?并讓學(xué)生闡述解題方法。

          教師歸納:二次函數(shù)解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)

         。2)頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)

          當(dāng)已知拋物線上任意三點(diǎn)時(shí),通常設(shè)為一般式y(tǒng)=ax2+bx+c形式。

          當(dāng)已知拋物線的頂點(diǎn)與拋物線上另一點(diǎn)時(shí),通常設(shè)為頂點(diǎn)式y(tǒng)=a(x-h(huán))2+k形式。

          當(dāng)已知拋物線與x軸的交點(diǎn)或交點(diǎn)橫坐標(biāo)時(shí),通常設(shè)為兩根式y(tǒng)=a(x-x1)(x-x2)

          強(qiáng)化練習(xí):已知二次函數(shù)的圖象過點(diǎn)A(1,0)和B(2,1),且與y軸交點(diǎn)縱坐標(biāo)為m。

          (1)若m為定值,求此二次函數(shù)的解析式;

         。2)若二次函數(shù)的圖象與x軸還有異于點(diǎn)A的另一個(gè)交點(diǎn),求m的取值范圍。

          二、知識(shí)點(diǎn)串聯(lián),綜合應(yīng)用

          例:如圖,拋物線y=ax2+bx+c過點(diǎn)A(-1,0),且經(jīng)過直線y=x-3與坐標(biāo)軸的兩個(gè)交

        《二次函數(shù)》教案10

          教學(xué)目標(biāo)

          (一)教學(xué)知識(shí)點(diǎn)

          1.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.

          2.進(jìn)一步發(fā)展估算能力.

          (二)能力訓(xùn)練要求

          1.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).

          2.利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗(yàn)數(shù)形結(jié)合思想.

          (三)情感與價(jià)值觀要求

          通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力.

          教學(xué)重點(diǎn)

          1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

          2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.

          教學(xué)難點(diǎn)

          利用二次函數(shù)的圖象求一元二次方程的近似根.

          教學(xué)方法

          學(xué)生合作交流學(xué)習(xí)法.

          教具準(zhǔn)備

          投影片三張

          第一張:(記作§2.8.2A)

          第二張:(記作§2.8.2B)

          第三張:(記作§2.8.2C)

          教學(xué)過程

         、.創(chuàng)設(shè)問題情境,引入新課

          [師]上節(jié)課我們學(xué)習(xí)了二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),就是y=0時(shí)的一元二次方程的根,于是,我們?cè)诓唤夥匠痰那闆r下,只要知道二次函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即可.但是在圖象上我們很難準(zhǔn)確地求出方程的解,所以要進(jìn)行估算.本節(jié)課我們將學(xué)習(xí)利用二次函數(shù)的圖象估計(jì)一元二次方程的根.

        《二次函數(shù)》教案11

          教學(xué)目標(biāo):

          1、經(jīng)歷描點(diǎn)法畫函數(shù)圖像的過程;

          2、學(xué)會(huì)觀察、歸納、概括函數(shù)圖像的特征;

          3、掌握 型二次函數(shù)圖像的特征;

          4、經(jīng)歷從特殊到一般的認(rèn)識(shí)過程,學(xué)會(huì)合情推理。

          教學(xué)重點(diǎn):

          型二次函數(shù)圖像的描繪和圖像特征的歸納

          教學(xué)難點(diǎn):

          選擇適當(dāng)?shù)淖宰兞康闹岛拖鄳?yīng)的函數(shù)值來畫函數(shù)圖像,該過程較為復(fù)雜。

          教學(xué)設(shè)計(jì):

          一、回顧知識(shí)

          前面我們?cè)趯W(xué)習(xí)正比例函數(shù)、一次函數(shù)和反比例函數(shù)時(shí)時(shí)如何進(jìn)一步研究這些函數(shù)的? 先(用描點(diǎn)法畫出函數(shù)的圖像,再結(jié)合圖像研究性質(zhì)。)

          引入:我們仿照前面研究函數(shù)的方法來研究二次函數(shù),先從最特殊的形式即 入手。因此本節(jié)課要討論二次函數(shù) ( )的圖像。

          板書課題:二次函數(shù) ( )圖像

          二、探索圖像

          1、 用描點(diǎn)法畫出二次函數(shù) 和 圖像

         。1) 列表

          引導(dǎo)學(xué)生觀察上表,思考一下問題:

         、贌o論x取何值,對(duì)于 來說,y的值有什么特征?對(duì)于 來說,又有什么特征?

         、诋(dāng)x取 等互為相反數(shù)時(shí),對(duì)應(yīng)的y的值有什么特征?

          (2) 描點(diǎn)(邊描點(diǎn),邊總結(jié)點(diǎn)的位置特征,與上表中觀察的結(jié)果聯(lián)系起來).

          (3) 連線,用平滑曲線按照x由小到大的順序連接起來,從而分別得到 和 的圖像。

          2、 練習(xí):在同一直角坐標(biāo)系中畫出二次函數(shù) 和 的圖像。

          學(xué)生畫圖像,教師巡視并輔導(dǎo)學(xué)困生。(利用實(shí)物投影儀進(jìn)行講評(píng))

          3、二次函數(shù) ( )的圖像

          由上面的四個(gè)函數(shù)圖像概括出:

         。1) 二次函數(shù)的 圖像形如物體拋射時(shí)所經(jīng)過的路線,我們把它叫做拋物線,

         。2) 這條拋物線關(guān)于y軸對(duì)稱,y軸就是拋物線的對(duì)稱軸。

         。3) 對(duì)稱軸與拋物線的交點(diǎn)叫做拋物線的頂點(diǎn)。注意:頂點(diǎn)不是與y軸的交點(diǎn)。

         。4) 當(dāng) 時(shí),拋物線的開口向上,頂點(diǎn)是拋物線上的最低點(diǎn),圖像在x軸的上方(除頂點(diǎn)外);當(dāng) 時(shí),拋物線的開口向下,頂點(diǎn)是拋物線上的最高點(diǎn)圖像在x軸的 下方(除頂點(diǎn)外)。

         。ㄗ詈檬怯脦缀萎嫲逖菔,讓學(xué)生加深理解與記憶)

          三、課堂練習(xí)

          觀察二次函數(shù) 和 的圖像

          (1) 填空:

          拋物線

          頂點(diǎn)坐標(biāo)

          對(duì)稱軸

          位 置

          開口方向

          (2)在同一坐標(biāo)系內(nèi),拋物線 和拋物線 的位置有什么關(guān)系?如果在同一個(gè)坐標(biāo)系內(nèi)畫二次函數(shù) 和 的圖像怎樣畫更簡便?

          (拋物線 與拋物線 關(guān)于x軸對(duì)稱,只要畫出 與 中的一條拋物線,另一條可利用關(guān)于x軸對(duì)稱來畫)

          四、例題講解

          例題:已知二次函數(shù) ( )的圖像經(jīng)過點(diǎn)(-2,-3)。

         。1) 求a 的值,并寫出這個(gè)二次函數(shù)的解析式。

         。2) 說出這個(gè)二次函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、開口方向和圖像的位置。

          練習(xí):(1)課本第31頁課內(nèi)練習(xí)第2題。

          (2) 已知拋物線y=ax2經(jīng)過點(diǎn)a(-2,-8)。

          (1)求此拋物線的函數(shù)解析式;

         。2)判斷點(diǎn)b(-1,- 4)是否在此拋物線上。

        《二次函數(shù)》教案12

          一.學(xué)習(xí)目標(biāo)

          1.經(jīng)歷對(duì)實(shí)際問題情境分析確定二次函數(shù)表達(dá)式的過程,體會(huì)二次函數(shù)意義。

          2.了解二次函數(shù)關(guān)系式,會(huì)確定二次函數(shù)關(guān)系式中各項(xiàng)的系數(shù)。

          二.知識(shí)導(dǎo)學(xué)

         。ㄒ唬┣榫皩(dǎo)學(xué)

          1.一粒石子投入水中,激起的波紋不斷向外擴(kuò)展,擴(kuò)大的圓的面積S與半徑r之間的函數(shù)關(guān)系式是 。

          2.用16米長的籬笆圍成長方形的生物園飼養(yǎng)小兔,怎樣圍可使小兔的活動(dòng)范圍較大?

          設(shè)長方形的長為x 米,則寬為 米,如果將面積記為y平方米,那么變量y與x之間的函數(shù)關(guān)系式為 .

          3.要給邊長為x米的正方形房間鋪設(shè)地板,已知某種地板的價(jià)格為每平方米240元,踢腳線的價(jià)格為每米30元,如果其他費(fèi)用為1000元,門寬0.8米,那么總費(fèi)用y為多少元?

          在這個(gè)問題中,地板的費(fèi)用與 有關(guān),為 元,踢腳線的費(fèi)用與 有關(guān),為 元;其他費(fèi)用固定不變?yōu)?元,所以總費(fèi)用y(元)與x(m)之間的函數(shù)關(guān)系式是 。

         。ǘw納提高。

          上述函數(shù)函數(shù)關(guān)系有哪些共同之處?它們與一次函數(shù)、反比例函數(shù)的關(guān)系式有什么不同?

          一般地,我們稱 表示的函數(shù)為二次函數(shù)。其中 是自變量, 函數(shù)。

          一般地,二次函數(shù) 中自變量x的取值范圍是 ,你能說出上述三個(gè)問題中自變量的取值范圍嗎?

          (三)典例分析

          例1、判斷:下列函數(shù)是否為二次函數(shù),如果是,指出其中常數(shù)a.b.c的值.

          (1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

          (5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

          例2.當(dāng)k為何值時(shí),函數(shù) 為二次函數(shù)?

          例3.寫出下列各函數(shù)關(guān)系,并判斷它們是什么類型的函數(shù).

          ⑴正方體的表面積S(cm2)與棱長a(cm)之間的函數(shù)關(guān)系;

          ⑵圓的面積y(cm2)與它的周長x(cm)之間的函數(shù)關(guān)系;

         、悄撤N儲(chǔ)蓄的年利率是1.98%,存入10000元本金,若不計(jì)利息,求本息和y(元)與所存年數(shù)x之間的函數(shù)關(guān)系;

         、攘庑蔚膬蓷l對(duì)角線的和為26cm,求菱形的面積S(cm2)與一對(duì)角線長x(cm)之間的函數(shù)關(guān)系.

          三.鞏固拓展

          1.已知函數(shù) 是二次函數(shù),求m的值.

          2. 已知二次函數(shù) ,當(dāng)x=3時(shí),y= -5,當(dāng)x= -5時(shí),求y的值.

          3.一個(gè)長方形的長是寬的1.6倍,寫出這個(gè)長方形的面積S與寬x之間函數(shù)關(guān)系式。

          4.一個(gè)圓柱的高與底面直徑相等,試寫出它的表面積S與底面半徑r之間的函數(shù)關(guān)系式

          5.用一根長為40 cm的鐵絲圍成一個(gè)半徑為r的扇形,求扇形的面積y與它的半徑x之間的函數(shù)關(guān)系式.這個(gè)函數(shù)是二次函數(shù)嗎?請(qǐng)寫出半徑r的取值范圍.

          6. 一條隧道的截面如圖所示,它的上部是一個(gè)半圓,下部是一個(gè)矩形,矩形的一邊長2.5 m.

         、徘笏淼澜孛娴拿娣eS(m2)關(guān)于上部半圓半徑r(m)的函數(shù)關(guān)系式;

         、魄螽(dāng)上部半圓半徑為2 m時(shí)的截面面積.(π取3.14,結(jié)果精確到0.1 m2)

          課堂練習(xí):

          1.判斷下列函數(shù)是否是二次函數(shù),若是,請(qǐng)指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)。

         。1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .

          2.寫出多項(xiàng)式的對(duì)角線的條數(shù)d與邊數(shù)n之間的函數(shù)關(guān)系式。

          3.某產(chǎn)品年產(chǎn)量為30臺(tái),計(jì)劃今后每年比上一年的產(chǎn)量增長x%,試寫出兩年后的產(chǎn)量y(臺(tái))與x的函數(shù)關(guān)系式。

          4.圓柱的高h(yuǎn)(cm)是常量,寫出圓柱的體積v(cm3)與底面周長C(cm)之間的函數(shù)關(guān)系式。

          課外作業(yè):

          A級(jí):

          1.下列函數(shù):(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,屬于二次函數(shù)的

          是 (填序號(hào)).

          2.函數(shù)y=(a-b)x2+ax+b是二次函數(shù)的條件為 .

          3.下列函數(shù)關(guān)系中,滿足二次函數(shù)關(guān)系的是( )

          A.圓的周長與圓的半徑之間的關(guān)系; B.在彈性限度內(nèi),彈簧的長度與所掛物體質(zhì)量的關(guān)系;

          C.圓柱的高一定時(shí),圓柱的體積與底面半徑的關(guān)系;

          D.距離一定時(shí),汽車行駛的速度與時(shí)間之間的關(guān)系.

          4.某超市1月份的營業(yè)額為200萬元,2、3月份營業(yè)額的月平均增長率為x,求第一季度營業(yè)額y(萬元)與x的函數(shù)關(guān)系式.

          B級(jí):

          5、一塊直角三角尺的形狀與尺寸如圖,若圓孔的半徑為 ,三角尺的厚度為16,求這塊三角尺的體積V與n的函數(shù)關(guān)系式.

          6.某地區(qū)原有20個(gè)養(yǎng)殖場(chǎng),平均每個(gè)養(yǎng)殖場(chǎng)養(yǎng)奶牛20xx頭。后來由于市場(chǎng)原因,決定減少養(yǎng)殖場(chǎng)的數(shù)量,當(dāng)養(yǎng)殖場(chǎng)每減少1個(gè)時(shí),平均每個(gè)養(yǎng)殖場(chǎng)的奶牛數(shù)將增加300頭。如果養(yǎng)殖場(chǎng)減少x個(gè),求該地區(qū)奶?倲(shù)y(頭)與x(個(gè))之間的函數(shù)關(guān)系式。

          C級(jí):

          7.圓的半徑為2cm,假設(shè)半徑增加xcm 時(shí),圓的面積增加到y(tǒng)(cm2).

          (1)寫出y與x之間的函數(shù)關(guān)系式;

          (2)當(dāng)圓的半徑分別增加1cm、 時(shí),圓的面積分別增加多少?

         。3)當(dāng)圓的面積為5πcm2時(shí),其半徑增加了多少?

          8.已知y+2x2=kx(x-3)(k≠2).

          (1)證明y是x的二次函數(shù);

          (2)當(dāng)k=-2時(shí),寫出y與x的函數(shù)關(guān)系式。

        《二次函數(shù)》教案13

          〖大綱要求〗

          1. 理解二次函數(shù)的概念;

          2. 會(huì)把二次函數(shù)的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開口方向,會(huì)用描點(diǎn)法畫二次函數(shù)的圖象;

          3. 會(huì)平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;

          4. 會(huì)用待定系數(shù)法求二次函數(shù)的解析式;

          5. 利用二次函數(shù)的圖象,了解二次函數(shù)的增減性,會(huì)求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)和函數(shù)的最大值、最小值,了解二次函數(shù)與一元二次方程和不等式之間的聯(lián)系,數(shù)學(xué)教案-二次函數(shù)。

          內(nèi)容

         。1)二次函數(shù)及其圖象

          如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么,y叫做x的二次函數(shù)。

          二次函數(shù)的圖象是拋物線,可用描點(diǎn)法畫出二次函數(shù)的圖象。

         。2)拋物線的頂點(diǎn)、對(duì)稱軸和開口方向

          拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

          20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( )

         。ˋ)2米 (B)3米 (C)4米 (D)5米

          三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)

          21.已知:直線y=x+k過點(diǎn)A(4,-3)。(1)求k的值;(2)判斷點(diǎn)B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個(gè)象限。

          22.已知拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對(duì)稱軸為x=,

         。1) 求這條拋物線的解析式;

         。2) 試證明這條拋物線與X軸的兩個(gè)交點(diǎn)中,必有一點(diǎn)C,使得對(duì)于x軸上任意一點(diǎn)D都有AC+BC≤AD+BD。

          23.已知:金屬棒的長1是溫度t的一次函數(shù),現(xiàn)有一根金屬棒,在O℃時(shí)長度為200cm,溫度提高1℃,它就伸長0.002cm。

         。1) 求這根金屬棒長度l與溫度t的函數(shù)關(guān)系式;

         。2) 當(dāng)溫度為100℃時(shí),求這根金屬棒的長度;

         。3) 當(dāng)這根金屬棒加熱后長度伸長到201.6cm時(shí),求這時(shí)金屬棒的溫度。

          24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個(gè)不同的實(shí)數(shù)根,設(shè)s=x12+x22

         。1) 求S關(guān)于m的解析式;并求m的取值范圍;

          (2) 當(dāng)函數(shù)值s=7時(shí),求x13+8x2的值;

          25.已知拋物線y=x2-(a+2)x+9頂點(diǎn)在坐標(biāo)軸上,求a的值。

         。玻丁⑷鐖D,在直角梯形ABCD中,∠A=∠D=Rt∠,截。粒牛剑拢疲剑模牵剑阎粒拢剑,CD=3,AD=4,求:

          (1) 四邊形CGEF的面積S關(guān)于x的函數(shù)表達(dá)式和X的取值范圍;

         。ǎ玻 當(dāng)x為何值時(shí),S的數(shù)值是x的4倍。

         。玻、國家對(duì)某種產(chǎn)品的稅收標(biāo)準(zhǔn)原定每銷售100元需繳稅8元(即稅率為8%),臺(tái)洲經(jīng)濟(jì)開發(fā)區(qū)某工廠計(jì)劃銷售這種產(chǎn)品m噸,每噸2000元。國家為了減輕工人負(fù)擔(dān),將稅收調(diào)整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴(kuò)大了生產(chǎn),實(shí)際銷售比原計(jì)劃增加2x%。

          (1) 寫出調(diào)整后稅款y(元)與x的函數(shù)關(guān)系式,指出x的取值范圍;

         。ǎ玻 要使調(diào)整后稅款等于原計(jì)劃稅款(銷售m噸,稅率為8%)的78%,求x的值.

          28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)為B,C(B點(diǎn)在C點(diǎn)左邊)

         。ǎ保 寫出A,B,C三點(diǎn)的坐標(biāo);

          (2) 設(shè)m=a2-2a+4試問是否存在實(shí)數(shù)a,使△ABC為Rt△?若存在,求出a的值,若不存在,請(qǐng)說明理由;

         。ǎ常 設(shè)m=a2-2a+4,當(dāng)∠BAC最大時(shí),求實(shí)數(shù)a的值。

          習(xí)題2:

          一.填空(20分)

          1.二次函數(shù)=2(x - )2 +1圖象的對(duì)稱軸是 。

          2.函數(shù)y= 的自變量的取值范圍是 。

          3.若一次函數(shù)y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。

          4.已知關(guān)于的二次函數(shù)圖象頂點(diǎn)(1,-1),且圖象過點(diǎn)(0,-3),則這個(gè)二次函數(shù)解析式為 。

          5.若y與x2成反比例,位于第四象限的一點(diǎn)P(a,b)在這個(gè)函數(shù)圖象上,且a,b是方程x2-x -12=0的兩根,則這個(gè)函數(shù)的關(guān)系式 。

          6.已知點(diǎn)P(1,a)在反比例函數(shù)y= (k≠0)的圖象上,其中a=m2+2m+3(m為實(shí)數(shù)),則這個(gè)函數(shù)圖象在第 象限。

          7. x,y滿足等式x= ,把y寫成x的函數(shù) ,其中自變量x的取值范圍是 。

          8.二次函數(shù)y=ax2+bx+c+(a 0)的圖象如圖,則點(diǎn)P(2a-3,b+2)

          在坐標(biāo)系中位于第 象限

          9.二次函數(shù)y=(x-1)2+(x-3)2,當(dāng)x= 時(shí),達(dá)到最小值 。

          10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點(diǎn),已知x1x2=x1+x2+49,要使拋物線經(jīng)過原點(diǎn),應(yīng)將它向右平移 個(gè)單位。

          二.選擇題(30分)

          11.拋物線y=x2+6x+8與y軸交點(diǎn)坐標(biāo)( )

         。ˋ)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

          12.拋物線y=- (x+1)2+3的頂點(diǎn)坐標(biāo)( )

         。ˋ)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

          13.如圖,如果函數(shù)y=kx+b的圖象在第一、二、三象限,那么函數(shù)y=kx2+bx-1的圖象大致是( )

          14.函數(shù)y= 的自變量x的取值范圍是( )

         。ˋ)x 2 (B)x<2 x="">- 2且x 1 (D)x 2且x –1

          15.把拋物線y=3x2先向上平移2個(gè)單位,再向右平移3個(gè)單位,所得拋物線的解析式是( )

          (A)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2

          16.已知拋物線=x2+2mx+m -7與x軸的兩個(gè)交點(diǎn)在點(diǎn)(1,0)兩旁,則關(guān)于x的方程 x2+(m+1)x+m2+5=0的根的情況是( )

         。ˋ)有兩個(gè)正根 (B)有兩個(gè)負(fù)數(shù)根 (C)有一正根和一個(gè)負(fù)根 (D)無實(shí)根

          17.函數(shù)y=- x的圖象與圖象y=x+1的交點(diǎn)在( )

          (A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限

          18.如果以y軸為對(duì)稱軸的拋物線y=ax2+bx+c的圖象,如圖,

          則代數(shù)式b+c-a與0的關(guān)系( )

         。ˋ)b+c-a=0 (B)b+c-a>0 (C)b+c-a<0 (D)不能確定

          19.已知:二直線y=- x +6和y=x - 2,它們與y軸所圍成的三角形的面積為( )

         。ˋ)6 (B)10 (C)20 (D)12

          20.某學(xué)生從家里去學(xué)校,開始時(shí)勻速跑步前進(jìn),跑累了后,再勻速步行余下的路程,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)》。下圖所示圖中,橫軸表示該生從家里出發(fā)的時(shí)間t,縱軸表示離學(xué)校的路程s,則路程s與時(shí)間t之間的函數(shù)關(guān)系的圖象大致是( )

          三.解答題(21~23每題5分,24~28每題7分,共50分)

          21.已知拋物線y=ax2+bx+c(a 0)與x軸的兩交點(diǎn)的橫坐標(biāo)分別是-1和3,與y軸交點(diǎn)的縱坐標(biāo)是- ;

          (1)確定拋物線的解析式;

         。2)用配方法確定拋物線的開口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo)。

          22、如圖拋物線與直線 都經(jīng)過坐標(biāo)軸的正半軸上A,B兩點(diǎn),該拋物線的對(duì)稱軸x=—1,與x軸交于點(diǎn)C,且∠ABC=90°求:

          (1)直線AB的解析式;

          (2)拋物線的解析式。

          23、某商場(chǎng)銷售一批名脾襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn)每件襯衫降價(jià)1元, 商場(chǎng)平均每天可多售出2件:

          (1)若商場(chǎng)平均每天要盈利1200元,每件襯衫要降價(jià)多少元,

          (2)每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天盈利最多?

          24、已知:二次函數(shù) 和 的圖象都經(jīng)過x軸上兩個(gè)不同的點(diǎn)M、N,求a、b的值。

          25、如圖,已知⊿ABC是邊長為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A的坐標(biāo)為{—1,0),求

          (1)B,C,D三點(diǎn)的坐標(biāo);

          (2)拋物線 經(jīng)過B,C,D三點(diǎn),求它的解析式;

          (3)過點(diǎn)D作DE∥AB交過B,C,D三點(diǎn)的拋物線于E,求DE的長。

          26 某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月用電不超100度

          時(shí),按每度0.57元計(jì)費(fèi):每月用電超過100度時(shí).其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過部分按每度0.50元計(jì)費(fèi)。

          (1)設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,當(dāng)x≤100和x>100時(shí),分別寫出y關(guān)于x的函數(shù)

          關(guān)系式;

          (1)求證;不論m取何值,拋物線與x軸必有兩個(gè)交點(diǎn),并且有一個(gè)交點(diǎn)是A(2,0);

          (2)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為B,AB的長為d,求d與m之間的函數(shù)關(guān)系式;

          (3)設(shè)d=10,P(a,b)為拋物線上一點(diǎn):

          ①當(dāng)⊿ABP是直角三角形時(shí),求b的值;

         、诋(dāng)⊿ABP是銳角三角形,鈍角三角形時(shí),分別寫出b的取值范圍(第2題不要求寫出過程)

          28、已知二次函數(shù)的圖象 與x軸的交點(diǎn)為A,B(點(diǎn)B在點(diǎn)A的右邊),與y軸的交點(diǎn)為C;

          (1)若⊿ABC為Rt⊿,求m的值;

          (1)在⊿ABC中,若AC=BC,求sin∠ACB的值;

          (3)設(shè)⊿ABC的面積為S,求當(dāng)m為何值時(shí),s有最小值.并求這個(gè)最小值。

        《二次函數(shù)》教案14

          一、教材分析

          1.教材的地位和作用

          (1)函數(shù)是初等數(shù)學(xué)中最基本的概念之一,貫穿于整個(gè)初等數(shù)學(xué)體系之中,也是實(shí)際生活中數(shù)學(xué)建模的重要工具之一,二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆佛山市中考試題中,二次函數(shù)都是必不可少的內(nèi)容。

          (2)二次函數(shù)的圖像和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動(dòng)作用。

         。3)二次函數(shù)與一元二次方程、不等式等知識(shí)的聯(lián)系,使學(xué)生能更好地將所學(xué)知識(shí)融會(huì)貫通。

          2.課標(biāo)要求:

         、偻ㄟ^對(duì)實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義。

         、跁(huì)用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì)。

         、蹠(huì)根據(jù)公式確定圖象的頂點(diǎn)、開口方向和對(duì)稱軸(公式不要求記憶和推導(dǎo))。

          ④會(huì)根據(jù)二次函數(shù)的性質(zhì)解決簡單的實(shí)際問題。

          3.學(xué)情分析:

         。1)初三學(xué)生在新課的學(xué)習(xí)中已掌握二次函數(shù)的定義、圖像及性質(zhì)等基本知識(shí)。

         。2)學(xué)生的分析、理解能力較學(xué)習(xí)新課時(shí)有明顯提高。

         。3)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情很高,思維敏捷,具有一定的自主探究和合作學(xué)習(xí)的能力。

         。4)學(xué)生能力差異較大,兩極分化明顯。

          4.教學(xué)目標(biāo)

          ◆認(rèn)知目標(biāo)

          (1)掌握二次函數(shù) y=圖像與系數(shù)符號(hào)之間的關(guān)系。通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式求解方法和思路,能夠一題多解,發(fā)散提高學(xué)生的創(chuàng)造思維能力。

          ◆能力目標(biāo)

          提高學(xué)生對(duì)知識(shí)的整合能力和分析能力。

          ◆ 情感目標(biāo)

          制作動(dòng)畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會(huì)感受探索與創(chuàng)造,體驗(yàn)成功的喜悅。

          5.教學(xué)重點(diǎn)與難點(diǎn):

          重點(diǎn):(1)掌握二次函數(shù)y=圖像與系數(shù)符號(hào)之間的關(guān)系。

          (2) 各類形式的二次函數(shù)解析式的求解方法和思路。

         。ǎ常┍竟(jié)課主要目的,對(duì)歷屆中考題中的二次函數(shù)題目進(jìn)行類比分析,達(dá)到融會(huì)貫通的作用。

          難點(diǎn):(1)已知二次函數(shù)的解析式說出函數(shù)性質(zhì)

          (2)運(yùn)用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題.

          二、教學(xué)方法:

          1. 運(yùn)用多媒體進(jìn)行輔助教學(xué),既直觀、生動(dòng)地反映圖形變換,增強(qiáng)教學(xué)的條理性和形象性,又豐富了課堂的內(nèi)容,有利于突出重點(diǎn)、分散難點(diǎn),更好地提高課堂效率。

          2.將知識(shí)點(diǎn)分類,讓學(xué)生通過這個(gè)框架結(jié)構(gòu)很容易看出不同解析式表示的二次函數(shù)的內(nèi)在聯(lián)系,讓學(xué)生形成一個(gè)清晰、系統(tǒng)、完整的知識(shí)網(wǎng)絡(luò)。

          3.師生互動(dòng)探究式教學(xué),以課標(biāo)為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué).形成學(xué)生自動(dòng)、生生助動(dòng)、師生互動(dòng),教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教,讓每一個(gè)學(xué)生都能獲得知識(shí),能力得到提高。

          三、學(xué)法指導(dǎo):

          1.學(xué)法引導(dǎo)

          “授人之魚,不如授人之漁”在教學(xué)過程中,不但要傳授學(xué)生基本知識(shí),還要培育學(xué)生主動(dòng)思考,親自動(dòng)手,自我發(fā)現(xiàn)等能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)終極目標(biāo)。

          2.學(xué)法分析:新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主學(xué)習(xí),合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

          3、設(shè)計(jì)理念:《課標(biāo)》要求,對(duì)于課程實(shí)施和教學(xué)過程,教師在教學(xué)過程中應(yīng)與學(xué)生積極互動(dòng)、共同發(fā)展,要處理好傳授知識(shí)與培養(yǎng)能力的關(guān)系,關(guān)注個(gè)體差異,滿足不同學(xué)生的學(xué)習(xí)需要.”

          4、設(shè)計(jì)思路:不把復(fù)習(xí)課簡單地看作知識(shí)點(diǎn)的復(fù)習(xí)和習(xí)題的訓(xùn)練,而是通過復(fù)習(xí)舊知識(shí),拓展學(xué)生思維,提高學(xué)生學(xué)習(xí)能力,增強(qiáng)學(xué)生分析問題,解決問題的能力。

          四、教學(xué)過程:

          1、教學(xué)環(huán)節(jié)設(shè)計(jì):

          根據(jù)教材的結(jié)構(gòu)特點(diǎn),緊緊抓住新舊知識(shí)的內(nèi)在聯(lián)系,運(yùn)用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點(diǎn).

          本節(jié)課的教學(xué)設(shè)計(jì)環(huán)節(jié):

          ◆創(chuàng)設(shè)情境,引入新知 :復(fù)習(xí)舊知識(shí)的目的是對(duì)學(xué)生新課應(yīng)具備的“認(rèn)知前提能力”和“情感前提特征進(jìn)行檢測(cè)判斷”。學(xué)生自主完成,不僅體現(xiàn)學(xué)生的自主學(xué)習(xí)意識(shí),調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,也能為課堂教學(xué)掃清障礙。為了更好地理解、掌握二次函數(shù)圖像與系數(shù)之間的關(guān)系,根據(jù)不同學(xué)生的學(xué)習(xí)需要,按照分層遞進(jìn)的教學(xué)原則,設(shè)計(jì)安排了6個(gè)由淺入深的題型,讓每一個(gè)學(xué)生都能為下一步的探究做好準(zhǔn)備。

          ◆自主探究,合作交流:本環(huán)節(jié)通過開放性題的設(shè)置,發(fā)散學(xué)生思維,學(xué)生對(duì)二次函數(shù)的性質(zhì)作出全面分析。讓學(xué)生在教師的引導(dǎo)下,獨(dú)立思考,相互交流,培養(yǎng)學(xué)生自主探索,合作探究的能力。通過學(xué)生觀察、思考、交流,經(jīng)歷發(fā)現(xiàn)過程,加深對(duì)重點(diǎn)知識(shí)的理解。

          ◆運(yùn)用知識(shí),體驗(yàn)成功:根據(jù)不同層次的學(xué)生,同時(shí)配有兩個(gè)由低到高、層次不同的鞏固性習(xí)題,體現(xiàn)漸進(jìn)性原則,希望學(xué)生能將知識(shí)轉(zhuǎn)化為技能。讓每一個(gè)學(xué)生獲得成功,感受成功的喜悅。

          安排三個(gè)層次的練習(xí)。

          (一)從定義出發(fā)的簡單題目。

          (二)典型例題分析,通過反饋使學(xué)生掌握重點(diǎn)內(nèi)容。

          (三)綜合應(yīng)用能力提高。

          既培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,又培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。引導(dǎo)學(xué)生對(duì)學(xué)習(xí)內(nèi)容進(jìn)行梳理,將知識(shí)系統(tǒng)化,條理化,網(wǎng)絡(luò)化,對(duì)在獲取新知識(shí)中體現(xiàn)出來的數(shù)學(xué)思想、方法、策略進(jìn)行反思,從而加深對(duì)知識(shí)的理解。并增強(qiáng)學(xué)生分析問題,運(yùn)用知識(shí)的能力。

          (四)方法與小結(jié)

          由總結(jié)、歸納、反思,加深對(duì)知識(shí)的理解,并且能熟練運(yùn)用所學(xué)知識(shí)解決問題。

          2、作業(yè)設(shè)計(jì):(見課件)

          3、板書設(shè)計(jì):(見課件)

          五、評(píng)價(jià)分析:

          本節(jié)課的設(shè)計(jì),我以學(xué)生活動(dòng)為主線,通過“觀察、分析、探索、交流”等過程,讓學(xué)生在復(fù)習(xí)中溫故而知新,在應(yīng)用中獲得發(fā)展,從而使知識(shí)轉(zhuǎn)化為能力。本節(jié)教學(xué)過程主要由創(chuàng)設(shè)情境,引入新知――合作交流;探究新知――運(yùn)用知識(shí),體驗(yàn)成功;知識(shí)深化――應(yīng)用提高;歸納小結(jié)――形成結(jié)構(gòu)等環(huán)節(jié)構(gòu)成,環(huán)環(huán)相扣,緊密聯(lián)系,體現(xiàn)了讓學(xué)生成為行為主體即“動(dòng)手實(shí)踐、自主探索、合作交流“的《數(shù)學(xué)新課標(biāo)》要求。本設(shè)計(jì)同時(shí)還注重發(fā)揮多媒體的輔助作用,使學(xué)生更好地理解數(shù)學(xué)知識(shí);貫穿整個(gè)課堂教學(xué)的活動(dòng)設(shè)計(jì),讓學(xué)生在活動(dòng)、合作、開放、探究、交流中,愉悅地參與數(shù)學(xué)活動(dòng)的數(shù)學(xué)教學(xué)。

        《二次函數(shù)》教案15

          一、由實(shí)際問題探索二次函數(shù)

          某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子,現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會(huì)減少.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一棵樹,平均每棵樹就會(huì)少結(jié)5個(gè)橙子.

          (1) 問題中有哪些變量?其中哪些是自變量?哪些因變量

          (2)假設(shè)果園增種x棵橙子樹,那么果園共有多少棵橙子樹?這時(shí)平均每棵樹結(jié)多少個(gè)橙子?

          (3)如果果園橙子的總產(chǎn)量為y個(gè),那么請(qǐng)你寫出y與x之間的關(guān)系式.

          果園共有(100+x)棵樹,平均每棵樹結(jié)(600-5x)個(gè)橙子,因此果園橙子的總產(chǎn) 量

          y=(100+z)(6005x)=-5x2+100x+ 60000.

          二、想一想

          在上述問題中,種多少棵橙子樹,可以使果園橙子的產(chǎn)量最多?

          我們可以列表 表示橙子的總產(chǎn)量隨橙子樹的增加而變化情況.你能根據(jù) 表格中的數(shù)據(jù)作出猜測(cè)嗎 ?自己試一試.

          x/棵

          y/個(gè)

          三.做一做

          銀行的儲(chǔ)蓄利率是隨時(shí)間的變化而變化的。也就是說,利率是一個(gè)變量.在我國利率的調(diào)整是由中國人民銀行根據(jù)國民經(jīng)濟(jì)發(fā)展的情況而決定的.設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利 息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存. 如 果存款額是100元,那么請(qǐng)你寫出兩年后的本息和y(元)的表 達(dá)式(不考慮利息稅).

          四、二次函數(shù)的定義

          一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a0)的函數(shù)叫做x的二次函數(shù)(quadratic function)

          注意:定義中只要求二次項(xiàng)系數(shù)不為零,一次項(xiàng)系數(shù)、常數(shù)項(xiàng)可以為 零。

          例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函數(shù).我們以前學(xué)過的正方形面積A與邊長a的關(guān)系A(chǔ)=a2, 圓面積s與半徑r的 關(guān)系s=Try2等也都是二次函數(shù)的例子.

          隨堂練習(xí)

          1.下列函數(shù)中(x,t是自變量),哪些是二次 函數(shù)?

          y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t

          2.圓的半徑是l㎝,假設(shè)半徑增加x㎝時(shí),圓的面積增加y㎝.

          (1)寫出y與x之間的關(guān)系表達(dá)式;

          (2)當(dāng)圓的半徑分別增加lcm、 ㎝、2㎝時(shí),圓的面積增加多少?

          五、課時(shí)小結(jié)

          1. 經(jīng)歷探索和表 示二次函數(shù)關(guān)系的過程,猜想并歸納二次函數(shù)的定義及一般形式。

          2.用嘗試求值的方法解決種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多。

          六、活動(dòng)與探究

          若 是二次函數(shù),求m的值.

          七、作業(yè)

           習(xí)題2.1

          1.物體從某一高度落下,已知下落的高度h(m)和下落的時(shí)間t(s)的關(guān)系是:h=4.9t , 填 表表示物體在前5s下落的高度:

          t/s 1 2 3 4 5

          h/m

         、材彻S計(jì)劃為一批長方體形狀的產(chǎn)品涂上油漆,長方體的長和寬相等,高比長多0.5m。

          (1)長方體的長和寬用x(m)表示,長方體需要涂漆的表面積S(㎡)如何表示?

          (2) 如果涂漆每平方米所需要的費(fèi)用是5元,油漆每個(gè)長方體所需要費(fèi)用用y(元)表示,那么y的表達(dá)式是什么?

        【《二次函數(shù)》教案】相關(guān)文章:

        二次函數(shù)超級(jí)經(jīng)典課件教案05-13

        二次函數(shù)說課稿02-17

        二次函數(shù)的圖像說課稿11-04

        二次函數(shù)說課稿(11篇)02-17

        二次函數(shù)說課稿11篇11-15

        數(shù)學(xué)二次函數(shù)復(fù)習(xí)資料08-27

        二次函數(shù)測(cè)試題的整理08-20

        二次根式教案8篇02-21

        二次根式教案九篇02-06

        奇函數(shù)的反函數(shù)是奇函數(shù)嗎10-12

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>