《完全平方公式》教學設計
作為一位杰出的教職工,通常需要用到教學設計來輔助教學,教學設計是一個系統(tǒng)設計并實現(xiàn)學習目標的過程,它遵循學習效果最優(yōu)的原則嗎,是課件開發(fā)質量高低的關鍵所在。怎樣寫教學設計才更能起到其作用呢?下面是小編幫大家整理的《完全平方公式》教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
《完全平方公式》教學設計1
教學目標
1.了解公式的意義,使學生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學生觀察、分析及概括的能力;
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議
一、教學重點、難點
重點:通過具體例子了解公式、應用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例
公式
一、教學目標
(一)知識教學點
1.使學生能利用公式解決簡單的實際問題.
2.使學生理解公式與代數(shù)式的關系.
。ǘ┠芰τ柧汓c
1.利用數(shù)學公式解決實際問題的能力.
2.利用已知的公式推導新公式的能力.
(三)德育滲透點
數(shù)學來源于生產實踐,又反過來服務于生產實踐.
(四)美育滲透點
數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美.
二、學法引導
1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點
2.學生學法:觀察→分析→推導→計算
三、重點、難點、疑點及解決辦法
1.重點:利用舊公式推導出新的圖形的計算公式.
2.難點:同重點.
3.疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.
七、教學步驟
(一)創(chuàng)設情景,復習引入
師:同學們已經知道,代數(shù)的.一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.
在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
。ǔ鍪就队1)。解釋三角形,梯形面積公式
【教法說明】讓學生感知用割補法求圖形的面積。
《完全平方公式》教學設計2
教學目標
理解兩個完全平方公式的結構,靈活運用完全平方公式進行運算。
在運用完全平方公式的過程中,進一步發(fā)展學生的符號演算的能力,提高運算能力。
培養(yǎng)學生在獨立思考的基礎上,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的見解。
重點難點
重點
完全平方公式的比較和運用
難點
完全平方公式的結構特點和靈活運用。
教學過程
一、復習導入
1.說出完全平方公式的內容及作用。
2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?
學生思考后回答:由于兩數(shù)差可以轉化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結果是一樣的。
教師歸納:當我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準確;另一方面,當我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結構上來看就是一致的了,其結構都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍。”注意到它們的統(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。
我們學習運算,除了要重視結果,還要重視過程,平時注意訓練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。
二、新課講解
溫故知新
與,與相等嗎?為什么?
學生討論交流,鼓勵學生從不同的角度進行說理,共同歸納總結出兩條判斷的思路:
1.對原式進行運算,利用運算的結果來判斷;
2.不對原式進行運算,只做適當變形后利用整體的方法來判斷。
思考:與,與相等嗎?為什么?
利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。
總結歸納得到:;
三、典例剖析
例1運用完全平方公式計算:
(1);(2)
鼓勵學生用多種方法計算,只要言之成理,只要是自己動腦筋發(fā)現(xiàn)的,都要給予肯定,同時還要引導學生評價哪種算法最簡潔。
例2計算:
。1);(2).
例3計算:
(1);(2)
訓練學生熟練地、靈活地運用完全平方公式進行運算,進一步滲透整體和轉化的思想方法。
四、課堂練習
1.運用完全平方公式計算:
。1);(2);
。3);(4)
2.計算:
。1);(2).
3.計算:
。1);(2)
學生解答,教師巡視,注意學生的計算過程是否合理,組織學生對錯誤進行分析和點評。
五、小結
師生共同回顧完全平方公式的結構特點,體會公式的作用,交流計算的經驗。教師對課堂上學生掌握不夠牢固的知識進行辨析、強調與補充,學生也可以談一談個人的學習感受。
六、布置作業(yè)
P50第2(3)、(4),3題
【《完全平方公式》教學設計】相關文章:
完全平方公式的教案課件05-09
完全平方公式數(shù)學教案03-01
《公頃、平方千米 》教學設計01-31
《乘法公式》教學反思01-26
《公頃平方千米》教學反思(精選10篇)12-23
勵志公式推薦07-29
液體壓強公式10-12
精選《觀潮》教學設計 教案教學設計11-15
關于勵志的公式07-30
電場強度公式10-12