有關(guān)勾股定理的小論文
勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理。是一個基本的幾何定理,傳統(tǒng)上認(rèn)為是由古希臘的畢達(dá)哥拉斯所證明。下面是有關(guān)勾股定理的小論文的內(nèi)容,歡迎閱讀!
有關(guān)勾股定理的小論文1
在初二上學(xué)期我們學(xué)習(xí)了一種很實(shí)用并且很容易理解的定理——勾股定理。
勾股定理就是把直角三角形的兩直角邊的平方和等于斜邊的平方這一特性,又稱畢達(dá)哥拉斯定理或畢氏定理。
我腦海中印象最深的就是那棵畢達(dá)哥拉斯樹,它是由勾股定理不斷的連接從而構(gòu)成的一個樹狀的幾何圖形。兩個相鄰的小正方形面積的和等于相鄰的一個大正方形的面積。它看起來非常別致、漂亮,因?yàn)楣垂啥ɡ硎菙?shù)學(xué)史上的一顆明珠,它將會使人們再算一些問題時變得更方便。
你如果把勾股定理倒過來,它還是勾股定理逆定理,它最大的好處就在于它能夠證明某些三角形是直角三角形。這一點(diǎn)在我們幾何問題中是有很大價(jià)值的。
我國古代的《周髀算經(jīng)》就有關(guān)于勾股定理的記載::“若求邪至日者,以日下為句,日高為股,句股各自乘,并而開方除之,得邪至日”,而且它還記載了有關(guān)勾股定理的證明:昔者周公問于商高曰:“竊聞乎大夫善數(shù)也,請問昔者包犧立周天歷度——夫天可不階而升,地不可得尺寸而度,請問數(shù)安從出?” 商高曰:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出于九九八十一。故折矩,以為句廣三,股修四,徑隅五。既方之,外半其一矩,環(huán)而共盤,得成三四五。兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所生也!
同時發(fā)現(xiàn)勾股定理的還有古希臘的畢達(dá)哥拉斯。但是從很多泥板記載表明,巴比倫人是世界上最早發(fā)現(xiàn)“勾股定理”的。
由此可見古代的人們是多么的聰明、細(xì)心和善于發(fā)現(xiàn)!
法國和比利時稱勾股定理為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦,所以它又叫勾股弦定理。
勾股定理流長深遠(yuǎn),我們不能敗給古人,我們一定要善于發(fā)現(xiàn),將勾股定理靈活地運(yùn)用在生活中,將勾股定理發(fā)揚(yáng)光大!常見的勾股數(shù)按“勾股弦”順序:3,4,5 ;6,8,10;5,12,13 ;7,24,25;8,15,17 ;9,40,41……經(jīng)過計(jì)算表明,勾、股、弦的比例為1:√3:2 。
勾股定理既重要又簡單,更容易吸引人,所以它成百次地反復(fù)被人炒作,反復(fù)被人論證。1940年出版過一本名為《畢達(dá)哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實(shí)際上還不止于此,有資料表明,關(guān)于勾股定理的證明方法已有500余種,僅我國清末數(shù)學(xué)家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
勾股定理必將在人們今后的生活中發(fā)揮更大的作用!
有關(guān)勾股定理的小論文2
自“科教興國”戰(zhàn)略實(shí)施多年以來,我國的教育體制已逐漸從應(yīng)試教育向素質(zhì)教育轉(zhuǎn)變。然而,這種轉(zhuǎn)變的有效性仍值得檢驗(yàn)。素質(zhì)教育的本質(zhì)就是以培養(yǎng)、激發(fā)學(xué)生的創(chuàng)新思維為目的,以特色的教學(xué)模式為手段,調(diào)動學(xué)生的積極思維欲望,不拘一格地帶動學(xué)生對知識敢想、多想,以達(dá)到學(xué)生更深層次地理解所學(xué)知識,使其真正轉(zhuǎn)變?yōu)樽约旱闹R,并能在以后的學(xué)習(xí)、生活中加以利用。就數(shù)學(xué)而言,數(shù)學(xué)課堂教學(xué)研究一直是國內(nèi)外教育改革的焦點(diǎn)之一,課堂被認(rèn)為是學(xué)生構(gòu)建知識,老師組織學(xué)習(xí)最重要的.現(xiàn)實(shí)環(huán)境,它被喻為“人世間最復(fù)雜的實(shí)驗(yàn)室之一”。作為一名初中數(shù)學(xué)教育工作者,如何能在課堂中帶動學(xué)生的聽課積極性,使學(xué)生對我們所教內(nèi)容產(chǎn)生濃厚的興趣,而不認(rèn)為是教條式的填鴨,顯得至關(guān)重要。勾股定理是中國幾何的根源,是中華數(shù)學(xué)的精髓。在此,作者以初中二年級數(shù)學(xué)課程“勾股定理”作為課程實(shí)踐案例,進(jìn)行了一次簡單嘗試。
一、以歷史故事開始,激發(fā)學(xué)生興趣
筆者改變了以往“勾股定理”教學(xué)中照書念的本本模式,而是不惜用去10分鐘時間給學(xué)生講講勾股定理的起源。在引領(lǐng)學(xué)生將書翻到勾股定理章節(jié)后,告訴學(xué)生,大家書本上看到的這位畢達(dá)哥拉斯,是公元前四百多年前發(fā)現(xiàn)了直角三角形的三邊關(guān)系,而最早有關(guān)該定理的文字著作出自我國商朝約公元前200年左右的《周髀算經(jīng)》,由商高發(fā)現(xiàn)。并在三國時代由趙爽對其做出詳細(xì)注釋,又給出了另外一個證明引,我們的祖先是不是也很智慧呢?此時,全班幾乎所有學(xué)生目光都從書本移開,極為專注地看著筆者,眼神中帶著強(qiáng)烈的求知欲望。筆者轉(zhuǎn)而引導(dǎo)學(xué)生開始上課,每個孩子都帶著濃厚的興趣想要學(xué)好我們祖先發(fā)現(xiàn)的偉大定理。
二、數(shù)形結(jié)合,形象理解抽象概念
通過帶領(lǐng)學(xué)生從看圖18.1-2中快速計(jì)算正方形ABC、A’B’C’面積,并展開猜想,引出“勾股定理”的命題。隨后,將學(xué)生分組,一組4人,給每組分發(fā)下去4個全等的直角三角形紙板,短直角邊標(biāo)有a(勾)字樣,長直角邊和斜邊分別標(biāo)有b(股)及c(弦)。讓每一位同學(xué)都在仔細(xì)觀察“趙爽弦圖”的同時,用紙板擺出“趙爽弦圖”,使學(xué)生對趙爽的證明過程有一個初步形象的直觀認(rèn)識,然后給學(xué)生做出趙爽對“勾股定理”的詳細(xì)推導(dǎo)。學(xué)生們在小組參與弦圖旋轉(zhuǎn)、擺放的過程中,個個樂此不疲,相互提醒。雖然,教室中看似多了點(diǎn)吵鬧,但筆者發(fā)現(xiàn),在學(xué)生眼、手、口并用的實(shí)際操作中,勾股定理的學(xué)習(xí)少了許多課本填鴨式的枯燥,換之而來的是學(xué)生們積極的參與、激烈的討論和更為濃厚的興趣。
三、舉一反三,調(diào)動思維
在定理證出后,筆者立即向?qū)W生提問:誰能給出快速說出更多的均以整數(shù)為邊的勾股數(shù)的方法?底下同學(xué)開始議論,一位同學(xué)的回答引得全班哄堂大笑,上網(wǎng)!筆者也忍俊不禁,告訴他很會利用現(xiàn)代高科技工具,算是一項(xiàng)能力,但不是獨(dú)立解決該問題的最佳辦法。此時,已有學(xué)生說出6、8、10,9、12、15等等。筆者微笑點(diǎn)頭肯定,整數(shù)勾股數(shù)三遍等量放大比例同樣也是勾股數(shù),三邊不可約分的整數(shù)勾股數(shù)是以質(zhì)數(shù)為最短邊,并且只有一組以其為最短邊的勾股數(shù)。至于原因,不過該內(nèi)容已超綱,有興趣的同學(xué)可以課下研究、探討。
四、課后總結(jié),課外拓展
重點(diǎn)內(nèi)容“勾股定理”授課完畢,繼而啟發(fā)學(xué)生對“勾股定理”的實(shí)際應(yīng)用。學(xué)生通過做門框、湖水等實(shí)際應(yīng)用題對勾股定理的實(shí)用性有了更加現(xiàn)實(shí)的認(rèn)識,也有了數(shù)學(xué)建模的簡單概念。鄰近下課時,給學(xué)生布置了家庭作業(yè),讓學(xué)生用一個禮拜的時間觀察生活中有關(guān)勾股定理應(yīng)用的現(xiàn)實(shí)例子,并加以簡單介紹。之后騰出一節(jié)課給學(xué)生自由發(fā)揮,介紹自己對勾股定理的實(shí)踐觀察,學(xué)生們積極上臺發(fā)言,表達(dá)欲望強(qiáng)烈,在其他同學(xué)獲取知識的同時,講述的同學(xué)也在大家肯定的掌聲中增強(qiáng)了自信心,課外拓展取得了很好的效果。
五、結(jié)語
固定不變的是已有的知識,持續(xù)發(fā)展進(jìn)步的是我們的思維。初中學(xué)生正處在一個思維活躍的階段,在初中數(shù)學(xué)課堂基本理論的教學(xué)中,適時帶入一些生動靈活的素材,如講述所教內(nèi)容的歷史小故事,團(tuán)體討論、課外拓展等,培養(yǎng)起學(xué)生自動自發(fā)的學(xué)習(xí)意識,積極思考的求知欲望和舉一反三的實(shí)踐能力,會使我們的教學(xué)質(zhì)量得到較大幅度的提高,培養(yǎng)出更多的勤思考、愛動腦和成績好的優(yōu)秀學(xué)子。
【勾股定理的小論文】相關(guān)文章:
勾股定理小論文05-03
勾股定理的小論文06-12
勾股定理小論文范例05-03
關(guān)于勾股定理的研究性論文04-17
勾股定理說課稿,勾股定理說課稿范文08-16
《勾股定理》說課稿02-14
勾股定理說課稿精選06-13
勾股定理的說課稿04-21
勾股定理說課稿03-25