1. <rp id="zsypk"></rp>

      2. 《函數(shù)的概念》說課稿

        時(shí)間:2022-07-27 13:26:35 說課稿 我要投稿

        《函數(shù)的概念》說課稿

          作為一無名無私奉獻(xiàn)的教育工作者,就難以避免地要準(zhǔn)備說課稿,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。那么問題來了,說課稿應(yīng)該怎么寫?以下是小編為大家整理的《函數(shù)的概念》說課稿,希望對(duì)大家有所幫助。

        《函數(shù)的概念》說課稿

        《函數(shù)的概念》說課稿1

          “說課”有利于提高教師理論素養(yǎng)和駕馭教材的能力,也有利于提高教師的語(yǔ)言表達(dá)能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。以下是小編整理的函數(shù)的概念說課稿,希望對(duì)大家有幫助!

          尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說課的題目是《函數(shù)的概念》。

          新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

          一、說教材

          首先談?wù)勎覍?duì)教材的理解,《函數(shù)的概念》是北師大版必修一第二章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個(gè)高中數(shù)學(xué)學(xué)習(xí)中。又是溝通代數(shù)、方程、、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容的橋梁,同時(shí)也是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。函數(shù)學(xué)習(xí)過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學(xué)習(xí)可以提高了學(xué)生的數(shù)學(xué)思維能力。

          二、說學(xué)情

          接下來談?wù)剬W(xué)生的實(shí)際情況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對(duì)的學(xué)生可以說是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學(xué)生對(duì)本節(jié)課的學(xué)習(xí)是相對(duì)比較容易的。

          三、說教學(xué)目標(biāo)

          根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

          (一)知識(shí)與技能

          理解函數(shù)的概念,能對(duì)具體函數(shù)指出定義域、對(duì)應(yīng)法則、值域,能夠正確使用“區(qū)間”符號(hào)表示某些函數(shù)的定義域、值域。

          (二)過程與方法

          通過實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用進(jìn)一步加深集合與對(duì)應(yīng)數(shù)學(xué)思想方法。

          (三)情感態(tài)度價(jià)值觀

          在自主探索中感受到成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

          四、說教學(xué)重難點(diǎn)

          我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學(xué)難點(diǎn)是:符號(hào)“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實(shí)例中抽象出函數(shù)概念。

          五、說教法和學(xué)法

          現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的心理特征與認(rèn)知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學(xué)方法。

          六、說教學(xué)過程

          下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過程的設(shè)計(jì)。

          (一)新課導(dǎo)入

          首先是導(dǎo)入環(huán)節(jié),提問:關(guān)于函數(shù)你知道什么?在初中階段對(duì)函數(shù)是如何下定義的?你能否舉一個(gè)例子。從而引出本節(jié)課的課題《函數(shù)概念》。

          利用初中的函數(shù)概念進(jìn)行導(dǎo)入,拉近學(xué)生與新知識(shí)之間的距離,幫助學(xué)生進(jìn)一步完善知識(shí)框架行程知識(shí)體系。

          (二)新知探索

          接下來是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。

          首先利用多媒體展示生活實(shí)例

          (1)某山的海拔高度與氣溫的變化關(guān)系;

          (2)汽車勻速行駛,路程和時(shí)間的變化關(guān)系;

          (3)沸點(diǎn)和氣壓的變化關(guān)系。

          引導(dǎo)學(xué)生分析歸納以上三個(gè)實(shí)例,他們之間有什么共同點(diǎn),并根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量之間的關(guān)系是否為函數(shù)關(guān)系。

          預(yù)設(shè):①都有兩個(gè)非空數(shù)集A、B;②兩個(gè)數(shù)集之間都有一種確定的對(duì)應(yīng)關(guān)系;③對(duì)于數(shù)集A中的每一個(gè)x,按照某種對(duì)應(yīng)關(guān)系f,在數(shù)集B中都有唯一確定的y值和它對(duì)應(yīng)。

          接下來引導(dǎo)學(xué)生思考通過對(duì)上述實(shí)例的共同點(diǎn)并結(jié)合課本歸納函數(shù)的概念。組織學(xué)生閱讀課本,在閱讀過程中注意思考以下問題

          問題1:函數(shù)的概念是什么?初中與高中對(duì)函數(shù)概念的定義的異同點(diǎn)是什么?符號(hào)“x”的含義是什么?

          問題2:構(gòu)成函數(shù)的三要素是什么?

          問題3:區(qū)間的概念是什么?區(qū)間與集合的關(guān)系是什么?在數(shù)軸上如何表示區(qū)間?

          十分鐘過后,組織學(xué)生進(jìn)行全班交流。

          預(yù)設(shè):函數(shù)的概念:給定兩個(gè)非空數(shù)集A和B,如果按照某個(gè)對(duì)應(yīng)關(guān)系f,對(duì)于集合A中任何一個(gè)數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對(duì)應(yīng),那么就把這對(duì)應(yīng)關(guān)系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時(shí),x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。

          函數(shù)的三要素包括:定義域、值域、對(duì)應(yīng)法則。

          區(qū)間:

          為了使得學(xué)生對(duì)函數(shù)概念的本質(zhì)了解的更加深入此時(shí)進(jìn)行追問

          追問1:初中的函數(shù)概念與高中的函數(shù)概念有什么異同點(diǎn)?

          講解過程中注意強(qiáng)調(diào),函數(shù)的本質(zhì)為兩個(gè)數(shù)集之間都有一種確定的對(duì)應(yīng)關(guān)系,而且是一對(duì)一,或者多對(duì)一,不能一對(duì)多。

          追問2:符號(hào)“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?

          講解過程中注意強(qiáng)調(diào),符號(hào)“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù)不是f與x相乘。

          追問3:對(duì)應(yīng)關(guān)系f可以是什么形式?

          講解過程中注意強(qiáng)調(diào),對(duì)應(yīng)關(guān)系f可以是解析式、圖象、表格

          追問4:函數(shù)的三要素可以缺失嗎?指出三個(gè)實(shí)例中的三要素分別是什么。

          講解過程中注意強(qiáng)調(diào),函數(shù)的三要素缺一不可。

          追問5:用區(qū)間表示三個(gè)實(shí)例的定義域和值域。

          設(shè)計(jì)意圖:在這個(gè)過程當(dāng)中我將課堂完全交給學(xué)生,教師發(fā)揮組織者,引導(dǎo)者的作用,在運(yùn)用啟發(fā)性的原則,學(xué)生能夠獨(dú)立思考問題,動(dòng)手操作,還能在這個(gè)過程中和同學(xué)之間討論,加強(qiáng)了學(xué)生們之間的交流,這樣有利于培養(yǎng)學(xué)生們的合作意識(shí)和探究能力。

          (三)課堂練習(xí)

          接下來是鞏固提高環(huán)節(jié)。

          組織學(xué)生自己列舉幾個(gè)生活中有關(guān)函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。

          這樣的問題的設(shè)置,讓學(xué)生對(duì)知識(shí)進(jìn)一步鞏固,讓學(xué)生逐漸熟練掌握。

          (四)小結(jié)作業(yè)

          在課程的最后我會(huì)提問:今天有什么收獲?

          引導(dǎo)學(xué)生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。

          本節(jié)課的課后作業(yè)我設(shè)計(jì)為:

          1.求解下列函數(shù)的值

          (1)已知f(x)=5x-3,求發(fā)(x)=4。

          (2)已知

          求g(2)。

          2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°

          (1)試用解析表達(dá)式將橫截面中水的面積A表示成水深h的函數(shù)

          (2)確定函數(shù)的定義域和值域

          (3)嘗試?yán)L制函數(shù)的圖象

          這樣的設(shè)計(jì)能讓學(xué)生理解本節(jié)課的核心,并為下節(jié)課學(xué)習(xí)函數(shù)的表示方法做鋪墊。

        《函數(shù)的概念》說課稿2

          一、說課內(nèi)容:

          蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

          二、教材分析:

          1、教材的地位和作用

          這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

          2、教學(xué)目標(biāo)和要求:

         。1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

         。2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.

         。3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

          3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

          4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。

          三、教法學(xué)法設(shè)計(jì):

          1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程

          2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程

          3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

          四、教學(xué)過程:

         。ㄒ唬⿵(fù)習(xí)提問

          1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

         。ㄒ淮魏瘮(shù),正比例函數(shù),反比例函數(shù))

          2.它們的形式是怎樣的?

          (=x+b,≠0;=x ,≠0;= , ≠0)

          3.一次函數(shù)(=x+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有≠0的條件? 值對(duì)函數(shù)性質(zhì)有什么影響?

          【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

         。ǘ┮胄抡n

          函數(shù)是研究?jī)蓚(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

          例1、(1)圓的半徑是r(c)時(shí),面積s (c)與半徑之間的關(guān)系是什么?

          解:s=πr(r>0)

          例2、用周長(zhǎng)為20的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積()與矩形一邊長(zhǎng)x()之間的關(guān)系是什么?

          解: =x(20/2-x)=x(10-x)=-x+10x (0

          例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和(元)與x之間的關(guān)系是什么(不考慮利息稅)?

          解: =100(1+x)

          =100(x+2x+1)

          = 100x+200x+100(0

          教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

          【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

         。ㄈ┲v解新課

          以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

          二次函數(shù)的定義:形如=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

          鞏固對(duì)二次函數(shù)概念的理解:

          1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

          2、在 =ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)

          3、為什么二次函數(shù)定義中要求a≠0 ?

          (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

          4、在例3中,二次函數(shù)=100x2+200x+100中, a=100, b=200, c=100.

          5、b和c是否可以為零?

          由例1可知,b和c均可為零.

          若b=0,則=ax2+c;

          若c=0,則=ax2+bx;

          若b=c=0,則=ax2.

          注明:以上三種形式都是二次函數(shù)的特殊形式,而=ax2+bx+c是二次函數(shù)的一般形式.

          【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

          判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

          (1)=3(x-1)+1 (2)

          (3)s=3-2t (4)=(x+3)- x

          (5) s=10πr (6) =2+2x

          (8)=x4+2x2+1(可指出是關(guān)于x2的二次函數(shù))

          【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

         。ㄋ模╈柟叹毩(xí)

          1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10c。

         。1)當(dāng)它的一條直角邊的長(zhǎng)為4.5c時(shí),求這個(gè)直角三角形的面積;

         。2)設(shè)這個(gè)直角三角形的面積為Sc2,其中一條直角邊為xc,求S關(guān)

          于x的函數(shù)關(guān)系式。

          【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

          2.已知正方體的棱長(zhǎng)為xc,它的表面積為Sc2,體積為Vc3。

         。1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

         。2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

          【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

          3.設(shè)圓柱的高為h(c)是常量,底面半徑為rc,底面周長(zhǎng)為Cc,圓柱的體積為Vc3

         。1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

         。2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

          【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。

          4. 籬笆墻長(zhǎng)30,靠墻圍成一個(gè)矩形花壇,寫出花壇面積(2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

          【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。

         。ㄎ澹┩卣寡由

          1. 已知二次函數(shù)=ax2+bx+c,當(dāng) x=0時(shí),=0;x=1時(shí),=2;x= -1時(shí),=1.求a、b、c,并寫出函數(shù)解析式.

          【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

          2.確定下列函數(shù)中的值

          (1)如果函數(shù)= x^2-3+2 +x+1是二次函數(shù),則的值一定是______

          (2)如果函數(shù)=(-3)x^2-3+2+x+1是二次函數(shù),則的值一定是______

          【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

          (六) 小結(jié)思考:

          本節(jié)課你有哪些收獲?還有什么不清楚的地方?

          【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

         。ㄆ撸 作業(yè)布置:

          必做題:

          1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加,求關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

          2. 在長(zhǎng)20c,寬15c的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xc的正方形,寫出余下木板的面積(c2)與正方形邊長(zhǎng)x(c)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

          選做題:

          1.已知函數(shù) 是二次函數(shù),求的值。

          2.試在平面直角坐標(biāo)系畫出二次函數(shù)=x2和=-x2圖象

          【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

          五、教學(xué)設(shè)計(jì)思考

          以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

          以現(xiàn)代教育理論為依據(jù)

          以現(xiàn)代信息技術(shù)為手段

          貫穿一個(gè)原則——以學(xué)生為主體的原則

          突出一個(gè)特色——充分鼓勵(lì)表?yè)P(yáng)的特色

          滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

        《函數(shù)的概念》說課稿3

          一、本課時(shí)在教材中的地位及作用

          教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

          本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

          二、教學(xué)目標(biāo)

          理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

          通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

          通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

          三、重難點(diǎn)分析確定

          根據(jù)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。

          四、教學(xué)基本思路及過程

          本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

         、艑W(xué)情分析

          一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

          函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

         、平谭āW(xué)法

          1、本節(jié)課采用的方法有:

          直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

          2、采用這些方法的理論依據(jù):我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

          3、學(xué)法方面,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

         、墙虒W(xué)過程

         。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

          情景1:提供一張表格,把本班中考得分前10名的情況填入表格,

          我報(bào)名次,學(xué)生提供分?jǐn)?shù)。

          情景2:西康高速汽車的行駛速度為80千米/小時(shí),汽車行駛的距離

          y與行駛時(shí)間x之間的關(guān)系式為:y=80x

          情景3:安康市一天24小時(shí)內(nèi)的氣溫隨時(shí)間變化圖:(圖略)

          提問(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))

          提問(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的

          值也隨之唯一確定)

          提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題

          [設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開頭情境1、2的時(shí)候,我并沒有運(yùn)用書中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張中考成績(jī)統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個(gè)例子我改成一道簡(jiǎn)單的速度與時(shí)間問題,是因?yàn)閷W(xué)生對(duì)重力加速度的問題還不是很熟悉。同時(shí)這兩個(gè)例子并沒有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。

          這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。

          (二)探索新知,形成概念

          1、引導(dǎo)分析,探求特征

          思考:如何用集合的語(yǔ)言來闡述上述三個(gè)問題的共同特征?

          [設(shè)計(jì)意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時(shí)對(duì)學(xué)生進(jìn)行指引。

          提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個(gè)問題都涉及到了兩個(gè)集合,具體略)

          [設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。

          提問(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對(duì)應(yīng))

          及時(shí)給出單值對(duì)應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對(duì)應(yīng)。

          2、抽象歸納,引出概念

          提問(6):現(xiàn)在你能從集合角度說說這三個(gè)問題的共同點(diǎn)嗎?

          [設(shè)計(jì)意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。

          板書:函數(shù)的概念

          上述一系列問題,始終倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點(diǎn)。

          3、探求定義,提出注意

          提問(7):你覺得這個(gè)定義中應(yīng)注意哪些問題(兩個(gè)非空數(shù)集,唯一對(duì)應(yīng)等)?

          [設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。

          2、例題剖析,強(qiáng)化概念

          例1、判斷下列對(duì)應(yīng)是否為函數(shù):

         。1)

         。2)

          [設(shè)計(jì)意圖]通過例1的教學(xué),使學(xué)生體會(huì)單值對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

          例2、(1);

         。2)y=x—1;

          (3);

         。4)

          [設(shè)計(jì)意圖]首先對(duì)求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對(duì)應(yīng)法則與定義域相同的兩個(gè)函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號(hào)的本質(zhì)內(nèi)涵。

          例3、試求下列函數(shù)的定義域與值域:

         。1)

          (2)

          [設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則。

          4、鞏固練習(xí),運(yùn)用概念

          書本練習(xí)P25:練習(xí)1,2,3。P28:練習(xí)1,2

          布置作業(yè):A組:1、2。B組1。

          5、課堂小結(jié),提升思想

          引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對(duì)本節(jié)課有一個(gè)整體把握,將對(duì)學(xué)生形成的知識(shí)系統(tǒng)產(chǎn)生積極的影響。

          6、板書設(shè)計(jì):借助小黑板,時(shí)間的合理分配等(略)

          五、教學(xué)評(píng)價(jià)及反思

          我通過對(duì)一系列問題情景的設(shè)計(jì),讓學(xué)生在問題解決的過程中體驗(yàn)成功的樂趣,實(shí)現(xiàn)對(duì)本課重難點(diǎn)的突破,教學(xué)時(shí)間分配合理,為使課堂形式更加豐富,也可將某些問題改成判斷題。在學(xué)生分析、歸納、建構(gòu)概念的過程中,可能會(huì)出現(xiàn)理解的偏差,教師應(yīng)給予恰當(dāng)?shù)氖崂怼?/p>

          本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景(結(jié)合各學(xué)校的硬件條件)。

        《函數(shù)的概念》說課稿4

        尊敬的各位評(píng)委、老師們:

          大家好!

          今天我說課的內(nèi)容是《函數(shù)的概念》,選自人教版高中數(shù)學(xué)必修一第一章第二節(jié)。下面介紹我對(duì)本節(jié)課的設(shè)計(jì)和構(gòu)思,請(qǐng)您多提寶貴意見。

          我的說課有以下六個(gè)部分:

          一、背景分析

          1、學(xué)習(xí)任務(wù)分析

          本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容聯(lián)系密切,是學(xué)好后繼知識(shí)的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學(xué)教學(xué)中的地位和作用是至關(guān)重要的。

          2、學(xué)情分析

          學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,初步具備了學(xué)習(xí)函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學(xué)說到高中階段的對(duì)應(yīng)說很抽象,不易理解。

          另外,通過對(duì)集合的學(xué)習(xí),學(xué)生基本適應(yīng)了有效教學(xué)的課堂模式,初步具備了小組合作、自主探究的學(xué)習(xí)能力。

          基于以上的分析,我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;

          教學(xué)難點(diǎn)為:函數(shù)概念的形成及理解。

          二、教學(xué)目標(biāo)設(shè)計(jì)

          根據(jù)《課程標(biāo)準(zhǔn)》對(duì)本節(jié)課的學(xué)習(xí)要求,結(jié)合本班學(xué)生的情況,故而確立本節(jié)課的教學(xué)目標(biāo)。

          1、知識(shí)與技能(方面)

          通過豐富的實(shí)例,讓學(xué)生

         、倭私夂瘮(shù)是非空數(shù)集到非空數(shù)集的'一個(gè)對(duì)應(yīng);

          ②了解構(gòu)成函數(shù)的三要素;

          ③理解函數(shù)概念的本質(zhì);

         、芾斫鈌(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

          ⑤會(huì)求一些簡(jiǎn)單函數(shù)的定義域。

          2、過程與方法(方面)

          在教學(xué)過程中,結(jié)合生活中的實(shí)例,通過師生互動(dòng)、生生互動(dòng)培養(yǎng)學(xué)生分析推理、歸納總結(jié)和表達(dá)問題的能力,在函數(shù)概念的構(gòu)建過程中體會(huì)類比、歸納、猜想等數(shù)學(xué)思想方法。

          3、情感、態(tài)度與價(jià)值觀(方面)

          讓學(xué)生充分體驗(yàn)函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學(xué)生感受到數(shù)學(xué)的抽象美與簡(jiǎn)潔美。

          三、課堂結(jié)構(gòu)設(shè)計(jì)

          為充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的探究,我使用有效教學(xué)的課堂模式,課前學(xué)生通過結(jié)構(gòu)化預(yù)習(xí),完成問題生成單,課中采用師生互動(dòng)、小組討論、學(xué)生展寫、展講例題,教師點(diǎn)評(píng)的方式完成問題解決單,課后完成問題拓展單,課堂結(jié)構(gòu)包含:

          復(fù)習(xí)舊知,引出課題(約2分鐘)創(chuàng)設(shè)情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識(shí)——小組討論,展寫例題(約8分鐘)小組展講,教師點(diǎn)評(píng)(約10分鐘)總結(jié)反思,知識(shí)升華(約2分鐘)(最后)布置作業(yè),拓展練習(xí)。

          四、教學(xué)媒體設(shè)計(jì)

          教學(xué)中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動(dòng)地展示實(shí)例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學(xué)生對(duì)所學(xué)內(nèi)容有一整體認(rèn)識(shí),并讓學(xué)生利用黑板展寫、展講例題,有問題及時(shí)發(fā)現(xiàn)及時(shí)解決。

          五、教學(xué)過程設(shè)計(jì)

          本節(jié)課圍繞問題的解決與重難點(diǎn)的突破,設(shè)計(jì)了下面的教學(xué)過程。

          整個(gè)教學(xué)過程按四個(gè)環(huán)節(jié)展開:

          首先,在第一環(huán)節(jié)——復(fù)習(xí)舊知,引出課題,先由兩個(gè)問題導(dǎo)入新課

          ①初中時(shí)函數(shù)是如何定義的?

         、趛=1是函數(shù)嗎?

          [設(shè)計(jì)意圖]:學(xué)生通過對(duì)這兩個(gè)問題的思考與討論,發(fā)現(xiàn)利用初中的定義很難回答第②個(gè)問題,從而激起他們的好奇心:高中階段的函數(shù)概念會(huì)是什么?激發(fā)他們學(xué)習(xí)本節(jié)課的強(qiáng)烈愿望和情感,使他們處于積極主動(dòng)的探究狀態(tài),大大提高了課堂效率。

          從學(xué)生的心理狀態(tài)與認(rèn)知規(guī)律出發(fā),教學(xué)過程自然過渡到第二個(gè)環(huán)節(jié)——函數(shù)概念的形成。

          由于高中階段的函數(shù)概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學(xué)生能看見能感知的生活中的3個(gè)實(shí)例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數(shù)的概念,此過程我稱之為“創(chuàng)設(shè)情境,形成概念”。

          對(duì)于這3個(gè)實(shí)例,我分別預(yù)設(shè)一個(gè)問題讓學(xué)生思考與體會(huì)。

          問題1:從炮彈發(fā)射到落地的0-26s時(shí)間內(nèi),集合A是否存在某一時(shí)間t,在B中沒有高度h與之對(duì)應(yīng)?是否有兩個(gè)或多個(gè)高度與之相對(duì)應(yīng)?

          問題2:從1979—20xx年,集合A是否存在某一時(shí)間t,在B中沒有面積S與之對(duì)應(yīng)?是否有兩個(gè)或多個(gè)面積與它相對(duì)應(yīng)嗎?

          問題3:從1991—20xx年間,集合A中是否存在某一時(shí)間t,在B中沒恩格爾系數(shù)與之對(duì)應(yīng)?是否會(huì)有兩個(gè)或多個(gè)恩格爾系數(shù)與對(duì)應(yīng)?

          [設(shè)計(jì)意圖]:通過循序漸進(jìn)地提問,變教為誘,以誘達(dá)思,引導(dǎo)學(xué)生根據(jù)問題總結(jié)3個(gè)實(shí)例的各自特點(diǎn),并綜合各自特點(diǎn),歸納它們的公共特征,著重向?qū)W生滲透集合與對(duì)應(yīng)的觀點(diǎn),這樣,再讓學(xué)生經(jīng)歷由具體到抽象的概括過程,用集合、對(duì)應(yīng)的語(yǔ)言來描述函數(shù)時(shí)就顯得水到渠成,難點(diǎn)得以突破。

          函數(shù)的概念既已形成,本節(jié)課自然進(jìn)入了第3個(gè)環(huán)節(jié)——剖析概念,理解概念。

          函數(shù)概念的理解是本節(jié)課的重點(diǎn)也是難點(diǎn),概念本身比較抽象,學(xué)生在理解上可能把握不準(zhǔn)確,所以我分兩個(gè)步驟來進(jìn)行剖析,由具體到抽象,螺旋上升。

          首先,在學(xué)生熟讀熟背函數(shù)概念的基礎(chǔ)上,我設(shè)計(jì)一個(gè)學(xué)生活動(dòng),讓學(xué)生充分參與,在參與中體會(huì)學(xué)習(xí)的快樂。

          我利用多媒體制作一個(gè)表格,請(qǐng)學(xué)號(hào)為01—05的同學(xué)填寫自己上次的數(shù)學(xué)考試成績(jī),并提出3個(gè)問題:

          問題1:若學(xué)號(hào)構(gòu)成集合A,成績(jī)構(gòu)成集合B,對(duì)應(yīng)關(guān)系f:上次數(shù)學(xué)考試成績(jī),那么由A到B能否構(gòu)成函數(shù)?

          問題2:若將問題1中“學(xué)號(hào)”改為“01—05的學(xué)生”,其余不變,那么由A到B能否構(gòu)成函數(shù)?

          問題3:若學(xué)號(hào)04的學(xué)生上次考試因病缺考,無成績(jī),那么對(duì)問題1學(xué)號(hào)與成績(jī)能否構(gòu)成函數(shù)?

          [設(shè)計(jì)意圖]:通過層層提問,層層回答,讓學(xué)生對(duì)概念中關(guān)鍵詞的把握更為準(zhǔn)確,對(duì)函數(shù)概念的理解更為具體,為總結(jié)歸納函數(shù)概念的本質(zhì)特征打下基礎(chǔ)。

          其次,我通過幻燈片的形式展示幾組數(shù)集的對(duì)應(yīng)關(guān)系,讓學(xué)生分析討論哪些對(duì)應(yīng)關(guān)系能構(gòu)成函數(shù),在學(xué)生深刻認(rèn)識(shí)到函數(shù)是非空數(shù)集到非空數(shù)集的一對(duì)一或多對(duì)一的對(duì)應(yīng)關(guān)系,并能準(zhǔn)確把握概念中的關(guān)鍵詞后,再著重強(qiáng)強(qiáng)在這兩種對(duì)應(yīng)關(guān)系中,何為定義域,何為值域,值域和集合B有什么關(guān)系,強(qiáng)調(diào)函數(shù)的三要素,得出兩函數(shù)相等的條件。

          至此,本節(jié)課的第三個(gè)環(huán)節(jié)已經(jīng)完成,對(duì)于區(qū)間的概念,學(xué)生通過預(yù)習(xí)能夠理解課堂上不再多講,僅在多媒體上進(jìn)行展示,但會(huì)在后面例題的使用中指出注意事項(xiàng)。

          在本節(jié)課的第四個(gè)環(huán)節(jié)——例題分析中,我重點(diǎn)以例題的形式考查函數(shù)的有關(guān)概念問題,簡(jiǎn)單函數(shù)的定義域問題以及函數(shù)的求值問題,至于分段函數(shù)、復(fù)合函數(shù)的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學(xué)生討論、展寫、展講、學(xué)生互評(píng)、教師點(diǎn)評(píng)的方式完成知識(shí)的鞏固,讓學(xué)生成為課堂的主人。

          最后,通過

          ——總結(jié)點(diǎn)評(píng),完善知識(shí)體系

          ——課堂練習(xí),鞏固知識(shí)掌握

          ——布置作業(yè),沉淀教學(xué)成果

          六、教學(xué)評(píng)價(jià)設(shè)計(jì)

          教學(xué)是動(dòng)態(tài)生成的過程,課堂上必然會(huì)有難以預(yù)料的事情發(fā)生,具體的教學(xué)過程還應(yīng)根據(jù)實(shí)際情況加以調(diào)整。

          最后,引用赫爾巴特的一句名言結(jié)束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術(shù)的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。

          謝謝大家!

        《函數(shù)的概念》說課稿5

          一、說課內(nèi)容:

          人教版九年級(jí)數(shù)學(xué)下冊(cè)的二次函數(shù)的概念及相關(guān)習(xí)題

          二、教材分析:

          1、教材的地位和作用

          這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

          2、教學(xué)目標(biāo)和要求:

          (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

          (2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.

          (3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

          3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

          4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。

          三、教法學(xué)法設(shè)計(jì):

          1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程

          2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程

          3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

          四、教學(xué)過程:

          (一)復(fù)習(xí)提問

          1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

          (一次函數(shù),正比例函數(shù),反比例函數(shù))

          2.它們的形式是怎樣的?

          (y=kx+b,ky=kx ,ky= , k0)

          3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?

          【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

          (二)引入新課

          函數(shù)是研究?jī)蓚(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

          例1、(1)圓的半徑是r(cm)時(shí),面積s (cm2)與半徑之間的關(guān)系是什么?

          解:s=0)

          例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m2)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?

          解: y=x(20/2-x)=x(10-x)=-x2+10x (0

          例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

          解: y=100(1+x)2

          =100(x2+2x+1)

          = 100x2+200x+100(0

          教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

          【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

          (三)講解新課

          以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

          二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

          鞏固對(duì)二次函數(shù)概念的理解:

          1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

          2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r0)

          3、為什么二次函數(shù)定義中要求a?

          (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

          4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

          5、b和c是否可以為零?

          由例1可知,b和c均可為零.

          若b=0,則y=ax2+c;

          若c=0,則y=ax2+bx;

          若b=c=0,則y=ax2.

          注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

          【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

          判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

          (1)y=3(x-1)2+1 (2)

          (3)s=3-2t2 (4)y=(x+3)2- x2

          (5) s=10r2 (6) y=22+2x

          (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

          【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

          (四)鞏固練習(xí)

          1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

          (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

          (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

          于x的函數(shù)關(guān)系式。

          【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

          2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。

          (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

          (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

          【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

          3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3

          (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

          (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

          【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。

          4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

          【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。

          (五)拓展延伸

          1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.

          【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

          2.確定下列函數(shù)中k的值

          (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

          (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

          【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

          (六) 小結(jié)思考:

          本節(jié)課你有哪些收獲?還有什么不清楚的地方?

          【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

          (七) 作業(yè)布置:

          必做題:

          1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

          2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

          選做題:

          1.已知函數(shù) 是二次函數(shù),求m的值。

          2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象

          【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

          五、教學(xué)設(shè)計(jì)思考

          以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

          以現(xiàn)代教育理論為依據(jù)

          以現(xiàn)代信息技術(shù)為手段

          貫穿一個(gè)原則以學(xué)生為主體的原則

          突出一個(gè)特色充分鼓勵(lì)表?yè)P(yáng)的特色

          滲透一個(gè)意識(shí)應(yīng)用數(shù)學(xué)的意識(shí)

        《函數(shù)的概念》說課稿6

          一、說課內(nèi)容:

          蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題二、教材分析:

          1、教材的地位和作用這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

          2、教學(xué)目標(biāo)和要求:

         。1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

         。2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。

         。3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。

          3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

          4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。

          二、教法學(xué)法設(shè)計(jì):

          1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程。

          2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程。

          3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程四。

          三、教學(xué)過程:

          (一)復(fù)習(xí)提問

          1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))

          2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對(duì)函數(shù)性質(zhì)有什么影響?

         。ǘ┰O(shè)計(jì)意圖

          復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。

          引入新課函數(shù)是研究?jī)蓚(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。

          看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系:

          例1、(1)圓的半徑是r(cm)時(shí),面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。

          例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0

          例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0

          教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

         。ㄈ┲v解新課以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

          二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

          鞏固對(duì)二次函數(shù)概念的理解:

          1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

          2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)

          3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

          4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?

         。ㄋ模╈柟叹毩(xí)

          已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

          (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

         。2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。

          此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

         。ㄎ澹┬〗Y(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?

          讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

         。┳鳂I(yè)布置

          必做題:

          正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

          在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?

          選做題:

          1.已知函數(shù)是二次函數(shù),求m的值?

          2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象?

          作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

        《函數(shù)的概念》說課稿7

          第一大塊教材分析

          一、本課時(shí)在教材中的地位及作用

          教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

          本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

          二、教學(xué)目標(biāo)

          理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

          通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

          通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

          三、重難點(diǎn)分析確定

          根據(jù)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)

          第二大塊說教法、學(xué)法

          一、教學(xué)基本思路及過程

          本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

          二、學(xué)情分析

          一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

          函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

          三、教法、學(xué)法

          1、本節(jié)課采用的方法有:

          直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

          2、采用這些方法的理論依據(jù):

          我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

        【《函數(shù)的概念》說課稿】相關(guān)文章:

        《函數(shù)的概念》說課稿01-31

        《函數(shù)概念》說課稿07-07

        《函數(shù)的概念》說課稿07-25

        蘇教版《函數(shù)概念》說課稿07-07

        高中函數(shù)的概念說課稿01-14

        高中函數(shù)的概念說課稿04-01

        高中函數(shù)概念說課稿02-19

        《函數(shù)的概念》說課稿的內(nèi)容04-09

        高中函數(shù)的概念說課稿范文12-02

        二次函數(shù)概念說課稿07-08

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>