小學數(shù)學知識點的總結
總結是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,它可以幫助我們有尋找學習和工作中的規(guī)律,是時候寫一份總結了。那么你知道總結如何寫嗎?以下是小編精心整理的小學數(shù)學知識點總結,歡迎閱讀,希望大家能夠喜歡。
小學數(shù)學知識點總結 1
準備課
1、數(shù)一數(shù)
數(shù)數(shù):數(shù)數(shù)時,按一定的順序數(shù),從1開始,數(shù)到最后一個物體所對應的那個數(shù),即最后數(shù)到幾,就是這種物體的總個數(shù)。
2、比多少
同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數(shù)量同樣多。
比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。
比較兩種物體的多或少時,可以用一一對應的方法。
位置
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、后
體會前、后的含義:一般指面對的方向就是前,背對的.方向就是后。
同一物體,相對于不同的參照物,前后位置關系也會發(fā)生變化。
從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發(fā)生變化。
3、認識左、右
以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。
學好數(shù)學的方法和技巧總結
主動預習
預習的目的是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養(yǎng)成主動預習的習慣,是獲得數(shù)學知識的重要手段。
因此,要注意培養(yǎng)自學能力,學會看書。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
讓數(shù)學課學與練結合
在數(shù)學課上,光聽是沒用的。自己也要在草稿紙上練。當遇到不懂的難題時,一定要提出來,不能不懂裝懂,否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題。應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結束以后應深思一下進行歸納,做到一課一得。
單項式書寫格式
1、數(shù)字寫在字母的前面,應省略乘。[5a]、[16xy]等。
2、π是常數(shù),因此也可以作為系數(shù)。它不是未知數(shù)。
3、若系數(shù)是帶分數(shù),要化成假分數(shù)。
4、當一個單項式的系數(shù)是1或—1時,“1”通常省略不寫,如[(—1)ab]寫成[—ab]等。
5、在單項式中字母不可以做分母,分子可以。
6、單獨的數(shù)“0”的系數(shù)是零,次數(shù)也是零。
7、常數(shù)的系數(shù)是它本身,次數(shù)為零。
8、如果是分數(shù)的多項式,那么他的系數(shù)就是他的分數(shù)常數(shù),次數(shù)為最高次冪。
小學數(shù)學知識點總結 2
(一)數(shù)與計算
(1)20以內數(shù)的認識。加法和減法。數(shù)數(shù)。數(shù)的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數(shù)的`認識。加法和減法。數(shù)數(shù)。個位、十位。數(shù)的順序、大小、讀法和寫法。兩位數(shù)加、減整十數(shù)和兩位數(shù)加、減一位數(shù)的口算。兩步計算的加減式題。
(二)量與計量
鐘面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯(lián)系的內容。例如根據(jù)本班男、女生人數(shù),每組人數(shù)分布情況,想到哪些數(shù)學問題。
小學數(shù)學知識點總結 3
1、乘法的含義
乘法是求幾個相同加數(shù)連加的和的簡便算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的寫法和讀法
、胚B加算式改寫為乘法算式的方法。求幾個相同加數(shù)的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數(shù),然后寫乘號,再寫相同加數(shù)的個數(shù),最后寫等號與連加的和;也可以先寫相同加數(shù)的個數(shù),然后寫乘號,再寫相同加數(shù),最后寫等號與連加的'和。
如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12
4 × 3 = 12或3 × 4 = 12
、瞥朔ㄋ闶降淖x法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:“6乘3等于18”。
3、乘法算式中各部分的名稱及實際表示的意義
在乘法算式里,乘號前面的數(shù)和乘號后面的數(shù)都叫做“乘數(shù)”;等號后面的得數(shù)叫做“積”。
4、乘法算式所表示的意義
求幾個相同加數(shù)的和,用乘法計算比較簡單。一道乘法算式表示的就是幾個相同加數(shù)連加的和。如:4×5表示5個4相加或4個5相加。
5、加法寫成乘法時,加法的和與乘法的積相同。
6、乘法算式中,兩個乘數(shù)交換位置,積不變。
7、算式各部分名稱及計算公式。
乘法:乘數(shù)×乘數(shù)=積
加法:加數(shù)+加數(shù)=和
和—加數(shù)=加數(shù)
減法:被減數(shù)—減數(shù)=差
被減數(shù)=差+減數(shù)
減數(shù)=被減數(shù)—差
8、在9的乘法口訣里,幾乘9或9乘幾,都可看作幾十減幾,其中“幾”是指相同的數(shù)。
如:1×9=10—1 9×5=50—5
9、看圖,寫乘加、乘減算式時:
乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘減:先把每一份都算成相同的,寫成乘法,然后再把多算進去的減去。
計算時,先算乘,再算加減。
如:加法:3+3+3+3+2=14乘加:3×4+2=14乘減:3×5-1=14
10、“幾和幾相加”與“幾個幾相加”有區(qū)別
求幾和幾相加,用幾加幾;如:求4和3相加是多少?用加法(4+3=7)
求幾個幾相加,用幾乘幾。
如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
補充:幾和幾相乘,求積?用幾×幾.如:2和4相乘用2×4=8
2個乘數(shù)都是幾,求積?用幾×幾。如:2個8相乘用8×8=64
11、一個乘法算式可以表示兩個意義,如“4×2”既可以表示“4個2相加”,也可以表示“2個4相加”。
“5+5+5”寫成乘法算式是(3×5=15)或(5×3=15),
都可以用口訣(三五十五)來計算,表示(3)個(5)相加
3×5=15讀作:3乘5等于15. 5×3=15讀作:5乘3等于15
小學數(shù)學知識點總結 4
一、百分數(shù)的意義:
表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù)。百分數(shù)又叫百分比或百分率,百分數(shù)不能帶單位。
注意:百分數(shù)是專門用來表示一種特殊的倍比關系的,表示兩個數(shù)的比。
1、百分數(shù)和分數(shù)的區(qū)別和聯(lián)系:
(1)聯(lián)系:都可以用來表示兩個量的倍比關系。
(2)區(qū)別:意義不同:百分數(shù)只表示倍比關系,不表示具體數(shù)量,所以不能帶單位。分數(shù)不僅表示倍比關系,還能帶單位表示具體數(shù)量。百分數(shù)的分子可以是小數(shù),分數(shù)的分子只可以是整數(shù)。
注意:百分數(shù)在生活中應用廣泛,所涉及問題基本和分數(shù)問題相同,分母是100的分數(shù)并不是百分數(shù),必須把分母寫成“%”才是百分數(shù),所以“分母是100的分數(shù)就是百分數(shù)”這句話是錯誤的!%”的兩個0要小寫,不要與百分數(shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小數(shù)、分數(shù)、百分數(shù)之間的互化
(1)百分數(shù)化小數(shù):小數(shù)點向左移動兩位,去掉“%”。
(2)小數(shù)化百分數(shù):小數(shù)點向右移動兩位,添上“%”。
(3)百分數(shù)化分數(shù):先把百分數(shù)寫成分母是100的分數(shù),然后再化簡成最簡分數(shù)。
(4)分數(shù)化百分數(shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分數(shù)。
(5)小數(shù)化分數(shù):把小數(shù)成分母是10、100、1000等的分數(shù)再化簡。
(6)分數(shù)化小數(shù):分子除以分母。
二、百分數(shù)應用題
1、求常見的百分率,如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數(shù)是另一個數(shù)的`百分之幾。
2、求一個數(shù)比另一個數(shù)多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:(甲-乙)÷乙
求乙比甲少百分之幾:(甲-乙)÷甲
3、求一個數(shù)的百分之幾是多少。一個數(shù)(單位“1”)×百分率
4、已知一個數(shù)的百分之幾是多少,求這個數(shù)。
部分量÷百分率=一個數(shù)(單位“1”)
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣、成數(shù)=幾分之幾、百分之幾、小數(shù)
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八點五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半價
6、利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅后利息=利息-利息的應納稅額=利息-利息×5%
注:國債和教育儲蓄的利息不納稅
7、百分數(shù)應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾
(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%
(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%
小學數(shù)學知識點總結 5
1、用豎式計算兩位數(shù)加法時:
、傧嗤瑪(shù)位對齊,加號寫在高位下行之前。
、谟贸咦赢嫏M線。
、蹚膫位加起
、苋绻麄位滿10,向十位進1,寫在個位、十位之間,不進位不寫1
用豎式計算兩位數(shù)減法時:
、傧嗤瑪(shù)位對齊,減號寫在高位下行之前。
、谟贸咦赢嫏M線。
、蹚膫位減起
、苋绻麄位不夠減,從十位退1,到個位作10再減(借一要在頭上寫點),計算時十位要記得減去退掉的1。不借位不寫點
、莸脭(shù)寫在橫式上
2、估算:把一個接近整十整百的數(shù)看作整十整百來計算。
方法:個位小于5的少看,個位等于或大于5的多看,看成最為接近的整十或整百數(shù)!八纳嵛迦搿
如:49+42≈9028+45+24≈10098—17≈80
50 4030 50 20100 20更深一步的估計是能夠估出比80大
注:當問題里出現(xiàn)“大約”兩個字時,就需要估算。
3、求“一個已知數(shù)”比“另一個已知數(shù)”多多少、少多少?用減法計算,用“比”字兩邊的較大數(shù)減去較小數(shù)。
4、多幾、少幾已知的問題。比誰少幾,就用誰減去幾;未知數(shù)比誰多幾,就用誰加上幾。
方法:
、俑鶕(jù)已知,判斷出與要求的未知,誰多誰少
、谇蠖嗟挠眉臃,求少的用減法
基數(shù)和序數(shù)的區(qū)別
一、意思不同
基數(shù)是集合論中刻畫任意集合大小的一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一一對應,是兩個對等的集合。序數(shù)是在基數(shù)的基礎上再增加一層意思。
二、用處不同
基數(shù)可以比較大小,可以進行運算。
例如:
設|A|=a,|B|=β,定義a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a與β的積規(guī)定為|AxB|,A×B為A與B的笛卡兒積。
序數(shù),漢語表示序數(shù)的方法較多。通常是在整數(shù)前加“第”,如:第一,第二。也有單用基數(shù)的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。
三、寫法
基數(shù):1、2、3
序數(shù):第1、第2、第3
數(shù)與計算知識點
1、分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的'意義相同,就是求幾個相同加數(shù)和的簡便運算。
2、分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3、分數(shù)乘法意義分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
4、分數(shù)乘整數(shù):數(shù)形結合、轉化化歸
5、倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
小學數(shù)學知識點總結 6
(一)口算除法
1、整十數(shù)除整十數(shù)或幾百幾十的數(shù)的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表內除法計算。利用除法運算的性質:將被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。如:200÷50想20÷5=4,所以200÷50=4。
2、兩位數(shù)除兩位數(shù)或三位數(shù)的估算方法:除法估算一般是把算式中不是整十數(shù)或幾百幾十的數(shù)用“四舍五入”法估算成整十數(shù)或幾百幾十的數(shù),再進行口算。注意結果用“≈”號。
(二)筆算除法
1、除數(shù)是兩位數(shù)的筆算除法計算方法:從被除數(shù)的高位除起,先用除數(shù)試除被除數(shù)的前兩位,如果前兩位數(shù)比除數(shù)小,就看前三位。除到被除數(shù)的哪一位,商就寫在那一位的上面。每次除后余下的數(shù)必須比除數(shù)小。
2、除數(shù)不是整十數(shù)的'兩位數(shù)的除法的試商方法:如果除數(shù)是一個接近整十數(shù)的兩位數(shù),就用“四舍五入”法把除數(shù)看做與它接近的整十數(shù)試商,也可以把除數(shù)看做與它接近的幾十五,再利用一位數(shù)的乘法直接確定商。
3、商一位數(shù):
(1)兩位數(shù)除以整十數(shù),如:62÷30;
(2)三位數(shù)除以整十數(shù),如:364÷70
(3)兩位數(shù)除以兩位數(shù),如:90÷29(把29看做30來試商)
(4)三位數(shù)除以兩位數(shù),如:324÷81(把81看做80來試商)
(5)三位數(shù)除以兩位數(shù),如:104÷26(把26看做25來試商)
(6)同頭無除商八、九,如:404÷42(被除數(shù)的位和除數(shù)的位一樣,即“同頭”,被除數(shù)的前兩位除以除數(shù)不夠除,即“無除”,不是商8就是商9。)
(7)除數(shù)折半商四五,如:252÷48(除數(shù)48的一半24,和被除數(shù)的前兩位25很接近,不是商4就是商5。)
4、商兩位數(shù):(三位數(shù)除以兩位數(shù))
(1)前兩位有余數(shù),如:576÷18
(2)前兩位沒有余數(shù),如:930÷31
5、判斷商的位數(shù)的方法:
被除數(shù)的前兩位除以除數(shù)不夠除,商是一位數(shù);被除數(shù)的前兩位除以除數(shù)夠除,商是兩位數(shù)。
(三)商的變化規(guī)律
1、商變化:
(1)被除數(shù)不變,除數(shù)乘(或除以)幾(0除外),商就除以(或乘)相同的數(shù)。
(2)除數(shù)不變,被除數(shù)乘(或除以)幾(0除外)商也乘(或除以)相同的數(shù)。
2、商不變:被除數(shù)和除數(shù)同時乘(或除以)相同的數(shù)(0除外),商不變。
(四)簡便計算:
同時去掉同樣多的0,如9100÷700=91÷7=13
小學數(shù)學知識點總結 7
1.認識人民幣的單位元、角、分和它們的十進關系,認識各種面值的人民幣,能看懂物品的單價,會進行簡單的計算。
2.結合自己的生活經驗和已經掌握的100以內數(shù)的知識,學習、認識人民幣,一方面初步知道人民幣的基本知識和懂得如何使用人民幣,提高社會實踐能力;另一方面加深對100以內數(shù)的`概念的理解。
3.體會數(shù)概念與現(xiàn)實生活的密切聯(lián)系。
4.認識各種面值的人民幣,并會進行簡單的計算。
5.使學生認識人民幣的單位元、角、分,知道1元=10角,1角=10分。
6.通過購物活動,使學生初步體會人民幣在社會生活、商品交換中的功能和作用并知道愛護人民幣。
小學數(shù)學知識點總結 8
生活中的數(shù)
(一)本單元知識網(wǎng)絡:
(二)各課知識點:
可愛的校園(數(shù)數(shù))
知識點:
1、按一定順序手口一致地數(shù)出每種物體的個數(shù)。
2、能用1-10各數(shù)正確地表述物體的數(shù)量。
快樂的家園(10以內數(shù)的認識)
知識點:
1、能形象理解數(shù)“1”既可以表示單個物體,也可以表示一個集合。
2、在數(shù)數(shù)過程中認識1-10數(shù)的符號表示方法。
3、理解1~10各數(shù)除了表示幾個,還可以表示第幾個,從而認識基數(shù)與序數(shù)的聯(lián)系與區(qū)別:基數(shù)表示數(shù)量的多少,序數(shù)表示數(shù)量的順序。
玩具(1~5的認識與書寫)
知識點:
1、能正確數(shù)出5以內物體的個數(shù)。
2、會正確書寫1-5的'數(shù)字。
小貓釣魚(0的認識)
知識點:
1、認識“0”的產生,理解“0”的含義,0即可以表示一個物體也沒有,也可以表示起點和分界點。
2、學會讀、寫“0”。
文具(6~10的認識與書寫)
知識點:
1、能正確數(shù)出數(shù)量是6-10的物體的個數(shù)。
2、會讀寫6—10的數(shù)字。
小學數(shù)學知識點總結 9
1、上、下
。1)在具體場景中理解上、下的含義及其相對性。
。2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。
。3)培養(yǎng)學生初步的空間觀念。
2、前、后
。1)在具體場景中理解前、后、最×的含義,以及前后的相對性。
。2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。
。3)培養(yǎng)學生初步的空間觀念。
加減法
。ㄒ唬┍締卧R網(wǎng)絡:
(二)各課知識點:
有幾枝鉛筆(加法的認識)
知識點:
1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數(shù)合并在一起求一共是多少,用加法計算;
2、初步嘗試選擇恰當?shù)姆椒ㄟM行5以內的加法口算。
3、第一次出現(xiàn)了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的`意思。
有幾輛車(初步認識加法的交換律)
4、左、右
(1)在具體場景中理解左、右的含義及其相對性。
。2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。
。3)培養(yǎng)學生初步的空間觀念。
5、位置
。1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。
。2)在具體情境中,會用2個數(shù)據(jù)(2個維度)描述人或物體的具體位置。
。3)在具體情境中,能依據(jù)2個維度的數(shù)據(jù)找到人或物體的具體位置。
小學數(shù)學知識點總結 10
第一單元 數(shù)據(jù)整理與收集
1.學會用“正”字記錄數(shù)據(jù)。
2.會數(shù)“正”,知道一個“正”字代表數(shù)量5。
3.根據(jù)統(tǒng)計表,會解決問題。
4.數(shù)據(jù)收集---整理---分析表格。
第二單元 表內除法(一)
1.平均分的含義:把一些物品分成幾份,每份分得同樣的多,叫做平均分。
除法就是用來解決平均分問題的。
2.平均分里有兩種情況:
(1)把一些東西平均分成幾份,求每份是多少;用除法計算,
總數(shù)÷份數(shù)=每份數(shù)
例:24本練習本,平均分給6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一個數(shù)里面有幾個幾)把一個數(shù)量按每份是多少分成一份,求能平均分成幾份;用除法計算,總數(shù)÷每份數(shù)=份數(shù)
例:24本練習本,每人4本,能分給多少人?
列式:24÷4=6
3、除法算式的含義:只要是平均分的過程,就可以用除法算式表示。
除法算式的讀法:從左到右的順序讀,“÷”讀作除以,“=”讀作等于,其他數(shù)字不變。
例如:12÷4=3讀作(12除以4等于3)
例:42÷7=6 42是(被除數(shù)),7是(除數(shù)),6是(商;這個算式讀作(42除以7等于6 )。
4、除法算式各部分名稱:在除法算式中,除號前面的數(shù)就被除數(shù),除號后面的數(shù)叫除數(shù),所得的數(shù)叫商。
被除數(shù)÷除數(shù)=商。變式:被除數(shù)÷商=除數(shù)(如何求被除數(shù),想:除數(shù)×商=被除數(shù)。)
5.用2~6的乘法口訣求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口訣求商。
2、用乘法口訣求商時,想除數(shù)和幾相乘的被除數(shù)。
一句口訣可以寫四個算式。(乘數(shù)相同的除外)。
例:用“三八二十四”這句口訣
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
計算方法:12÷4=( )時,想:( )四十二,所以商是( ).
6.解決問題
1、解決有關平均分問題的方法:
總數(shù)÷每份數(shù)=份數(shù)、總數(shù)÷份數(shù)=每份數(shù)、
因數(shù)×因數(shù)=積、一個因數(shù)=積÷另一個因數(shù)
2、用乘法和除法兩步計算解決實際問題的方法:
(1)所求問題要求求出總數(shù),用乘法計算;
(2)所求問題要求求出份數(shù)或每份數(shù),用除法計算。
(3)8個果凍,每2個一份,能分成幾份?求8里有幾個2,用除法計算。
(4)24里面有( )個4,,20里面有( )個5。(用除法計算。)
(5)最小公倍數(shù)問題:一堆水果,3個人正好分完,4個人也正好分完,問這堆水果最少有幾個?
第三單元 圖形的運動
1、軸對稱圖形:沿一條直線對折,兩邊完全重合。對折后能夠完全重合的圖形是軸對稱圖形,折痕所在的直線叫對稱軸。
成軸對稱圖形的漢字:
一,二,三,四,六,八,十,大,干,豐,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,畫,傘,王,人,非,菲,天,典,奠,旱,春,畝,目,山,單,殺,美,春,品,工,天,網(wǎng),回,喜,莫,罪,夫,黑,里,亞。
2、平移:當物體水平方向或豎直方向運動,并且物體的方向不發(fā)生改變,這種運動是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。
(記。浩揭浦荒苌舷乱苿踊蜃笥乙苿)
3、旋轉:體繞著某一點或軸進行圓周運動的現(xiàn)象就是旋轉。(例如:旋轉木馬、轉動的風扇、轉動的車輪等)
填空
1、汽車在筆直的公路上行駛,車身的運動是( )現(xiàn)象
2、教室門的打開和關閉,門的運動是( )現(xiàn)象。
A、平移 B、旋轉 C、平移和旋轉
3、下面( )的運動是平移。
A、旋轉的呼啦圈 B、電風扇扇葉 C、撥算珠
第四單元 表內除法(二)
這單元主要是考口算題。有以下幾種形式:
1、用7、8、9的乘法口訣求商
求商方法:想“除數(shù)×( )=被除數(shù)”,再根據(jù)乘法口訣計算得商。
例.直接口算:28÷4 8÷8
2、解決問題
求一個數(shù)里有幾個幾,和把一個數(shù)平均分成幾份,求每份是多少,都用除法計算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );還表示( )里有( )個( );
第五單元 混合運算
一、混合計算
混合運算,先乘除,后加減,有括號的要先算括號里面的。
只有加、減法或只有乘、除法,都要從左到右按順序計算。
二、解決兩步計算的實際問題
1、想好先解決什么問題,再解決什么問題。
2、可以畫圖幫助分析。
3、可以分布計算,也可以列綜合算式。
請畫出先算哪一步,再算哪一步(并標上1和2)
1、同級運算的類型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同級運算的類型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、帶小括號運算的類型:方法:算式里有括號的,要先算括號里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4、把兩個算式合并成一個綜合算式。(重點)。
弄清楚哪個數(shù)是前一步算式的結果,就用前一步算式替換掉那個數(shù),其他的照寫。當需要替換的是第二個數(shù),必要時還需要加上小括號。
例:15+9=24 24÷3=8 (強調括號不能忘)_____________________________
5、解決需要兩步計算解決的問題。(要想好先算出什么,在解答什么)
例:媽媽買回3捆鉛筆,每捆8支,送給妹妹12支后,還剩多少支?
先算____________________再算____________________
例:學校買來80本科技書,分給六年級35本,剩下的分給其它5個年級,平均每個年級分到多少本?
6、練習十三 第4題 (重點)
1.我們一共要烤90個面包,每次能烤9個,已經烤了36個,剩下的還要烤幾次?
2.我們家原來有25只兔子,又買了15只,一共有8個籠子,平均每個籠子放幾只?
3.小明有4套明信卡,每套8張,他把其中的5張送給了好朋友,還剩下幾張?
4.工人叔叔要挖總長60米的水溝,已經挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六單元 有余數(shù)的除法
有余數(shù)的除法
1、有余數(shù)的除法的意義:在平均分一些物體時,有時會有剩余。
2、余數(shù)與除數(shù)的關系:在有余數(shù)的除法中,余數(shù)必須比除數(shù)小。
最大的余數(shù)小于除數(shù)1,最小的余數(shù)是1。
3、筆算除法的計算方法:
(1)先寫除號“廠”
(2)被除數(shù)寫在除號里,除數(shù)寫在除號的左側。
(3)試商,商寫在被除數(shù)上面,并要對著被除數(shù)的個位。
(4)把商與除數(shù)的乘積寫在被除數(shù)的下面,相同數(shù)位要對齊。
(5)用被除數(shù)減去商與除數(shù)的乘積,如果沒有剩余,就表示能除盡。
4、有余數(shù)的除法的計算方法可以分四步進行:一商,二乘,三減,四比。
(1)商:即試商,想除數(shù)和幾相乘最接近被除數(shù)且小于被除數(shù),那么商就是幾,寫在被除數(shù)的個位的上面。
(2)乘:把除數(shù)和商相乘,將得數(shù)寫在被除數(shù)下面。
(3)減:用被除數(shù)減去商與除數(shù)的乘積,所得的差寫在橫線的下面。
(4)比:將余數(shù)與除數(shù)比一比,余數(shù)必須必除數(shù)小。
5、解決問題
根據(jù)除法的意義,解決簡單的有余數(shù)的除法的問題,要根據(jù)實際情況,靈活處理余數(shù)。
(1)余數(shù)比除數(shù)小。
例:43÷7=()…( )余數(shù)可能是( )或者余數(shù)最大是( )
(2)至少問題(進一法):商+1
例:有27箱菠蘿,王叔叔每次最多能運8箱。至少要運多少次才能運完這些菠蘿。
(3)最多問題(去尾法)
例:小麗有10元錢,買3元一個的面包,最多能買幾個?
課例:
22個學生去劃船,每條船最多坐4人,他們至少要租多少條船?
22÷4=5(條)……2(人)
答:他們至少要租6條船。
第七單元 萬以內數(shù)的認識
一、1000以內數(shù)的認識
1、10個一百就是一千。
2、讀數(shù)時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀“零”,末尾不管有幾個0,都不讀!纠纾20xx讀作二千零三,2300讀作二千三百】
3、寫數(shù)時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數(shù)也沒有就寫0占位。 【例如:三千五百寫作3500,三千零六十九寫作3069】
4、數(shù)的組成:看每個數(shù)位上是幾,就由幾個這樣的計數(shù)單位組成。例:2369由( )個千、( )個百、( )個十和( )個一組成的。
二、10000以內數(shù)的認識
1、10個一千是一萬。
2、萬以內數(shù)的讀法和寫法與1000以內的數(shù)讀法和寫法相同。
3、最小兩位數(shù)是10,最大的兩位數(shù)是99;最小三位數(shù)是100,最大的三位數(shù)是999;最小四位數(shù)是1000,最大的四位數(shù)是9999;最小的五位數(shù)是10000,最大的'五位數(shù)是99999。
三、整百、整千數(shù)加減法
1、整百、整千加減法的計算方法。
(1)把整百、整千數(shù)看成幾個百,幾個千,然后相加減。
(2)先把0前面的數(shù)相加減,再在得數(shù)末尾添上與整百、整千數(shù)相同個數(shù)的0。
2、估算
把數(shù)看做它的近似數(shù)再計算。
四、10000以內數(shù)的大小比較的方法:
(1)位數(shù)多的數(shù)就大,例如453 < 1000
(2)如果位數(shù)相同,就比較最高位上的數(shù)字,數(shù)字大的這個數(shù)就大,反之就小;例如 357 < 978
(3)如果最高位上的數(shù)字相同,就比較下一位上的數(shù),依次類推。246 > 219
補充:
1、相鄰兩個計數(shù)單位之間的進率是10。記:一個一個地數(shù),10個一是( )。一十一十地數(shù),10個十是( )。一百一百地數(shù),10個一百是( )。一千一千地數(shù),10個一千是( )。
2.在數(shù)位順序表中,從右邊起,第一位是(個位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(萬位)。
3、數(shù)的組成:就是看每個數(shù)位上是幾,就有幾個這樣的計數(shù)單位組成。
例:2647=( )+( )+( )+( )
4、用估算策略解決問題。
96頁 例13(估大)
練習19 第8題(估小)
第八單元 克、千克
1.(千克)和(克)都是國際上通用的質量單位。計量比較重的物品,常用“千克”(kg)作單位。
2、稱較輕的物品的質量時,用“克”作單位;稱較重的物品的質量時,用“千克”作單位。
3、一個兩分的硬幣約是1克。兩袋500克的鹽約是1千克。
4、1千克=1000克 1kg=1000g.進率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10兩、1兩=50克)
5、計算或者比較大小時,如果單位不同,就需要把單位統(tǒng)一。一般統(tǒng)一成單位“克”。
估計物品有多重,要結合物品的大小、質地等因素。
小學數(shù)學知識點總結 11
(一)分數(shù)乘法意義:
1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。
“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。
2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。
“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)
(二)分數(shù)乘法計算法則:
1、分數(shù)乘整數(shù)的計算方法:用分子乘整數(shù)的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)
(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結果必須是最簡分數(shù))。
2、分數(shù)乘分數(shù)的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。
(2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結果才是最簡單分數(shù))。
(4)分數(shù)的基本性質:分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。
(三)積與因數(shù)的關系:
一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b>1時,c>a。
一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c
一個數(shù)(0除外)乘等于1的`數(shù),積等于這個數(shù)。a×b=c,當b=1時,c=a。
在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。
(四)分數(shù)混合運算
1、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的,再算括號外面的。
2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分數(shù)乘法應用題——用分數(shù)乘法解決問題
1、求一個數(shù)的幾分之幾是多少?(用乘法)
已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。
2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。
3、求比一個數(shù)多(或少)幾分之幾的數(shù)是多少的解題方法
(1)單位“1”的量+(-)單位“1”的量×這個數(shù)量比單位“1”的量多(或少)的幾分之幾=這個數(shù)量;
(2)單位“1”的量×[1+這個數(shù)量比單位“1”的量多(或少)的幾分之幾]=這個數(shù)量。
小學數(shù)學知識點總結 12
一、圓的特征
1、圓是平面內封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:
圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π=周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr
圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。
4、半圓周長=圓周長一半+直徑=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)
S圓=πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的`情況下,圓的面積則,而長方形的面積則最小。
周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。
4、環(huán)形面積=大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數(shù)據(jù)
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小學數(shù)學知識點總結 13
第一單元 小數(shù)乘法
1.小數(shù)乘整數(shù):意義——求幾個相同加數(shù)的和的簡便運算。
計算方法:先把小數(shù)擴大成整數(shù);按整數(shù)乘法的法則算出積;再看因數(shù)中一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點上小數(shù)點。
2.小數(shù)乘小數(shù):意義——就是求這個數(shù)的幾分之幾是多少。
計算方法:先把小數(shù)擴大成整數(shù);按整數(shù)乘法的法則算出積;再看因數(shù)中一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點上小數(shù)點。
規(guī)律: 一個數(shù)(0除外)乘大于1的數(shù),積比原來的數(shù)大; 一個數(shù)(0除外)乘小于1的數(shù),積比原來的數(shù)小。
3.求近似數(shù)的方法一般有三種: ⑴四舍五入法;⑵進一法;⑶去尾法
4.計算錢數(shù),保留兩位小數(shù),表示計算到分。保留一位小數(shù),表示計算到角。
5.小數(shù)四則運算順序跟整數(shù)是一樣的。
6.運算定律和性質: 加法: 加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c) 減法: 減法性質:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性質:a÷b÷c=a÷(b×c)
7.小數(shù)除法的意義:已知兩個因數(shù)的積與其中的一個因數(shù),求另一個因數(shù)的運算。
8.小數(shù)除以整數(shù)的.計算方法:小數(shù)除以整數(shù),按整數(shù)除法的方法去除。商的小數(shù)點要和被除數(shù)的小數(shù)點對齊。整數(shù)部分不夠除,商0,點上小數(shù)點。如果有余數(shù),要添0再除。
9.除數(shù)是小數(shù)的除法的計算方法:先將除數(shù)和被除數(shù)擴大相同的倍數(shù),使除數(shù)變成整數(shù),再按“除數(shù)是整數(shù)的小數(shù)除法”的法則進行計算。
10.在實際應用中,小數(shù)除法所得的商也可以根據(jù)需要用“四舍五入”法保留一定的小數(shù)位數(shù),求出商的近似數(shù)。五年級數(shù)學重要知識點
11.除法中的變化規(guī)律:
①商不變性質:被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(0除外),商不變。
、诔龜(shù)不變,被除數(shù)擴大,商隨著擴大。
、郾怀龜(shù)不變,除數(shù)縮小,商擴大。
12.循環(huán)小數(shù):一個數(shù)的小數(shù)部分,從某一位起,一個數(shù)字或者幾個數(shù)字依次不斷重復出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。循環(huán)節(jié):一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復出現(xiàn)的數(shù)字。如6.3232……的循環(huán)節(jié)是32.
13.小數(shù)部分的位數(shù)是有限的小數(shù),叫做有限小數(shù)。小數(shù)部分的位數(shù)是無限的小數(shù),叫做無限小數(shù)。
14.從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。
15.在含有字母的式子里,字母中間的乘號可以記作“?”,也可以省略不寫。加號、減號除號以及數(shù)與數(shù)之間的乘號不能省略。
16.a×a可以寫作a?a或a2,讀作a的平方。 2a表示a+a
17.方程:含有未知數(shù)的等式稱為方程。 使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。 求方程的解的過程叫做解方程。
18.解方程原理:天平平衡。等式左右兩邊同時加、減、乘、除相同的數(shù)(0除外),等式依然成立。
19.10個數(shù)量關系式: 加法:和=加數(shù)+加數(shù) 一個加數(shù)=和-兩一個加數(shù) 減法:差=被減數(shù)-減數(shù) 被減數(shù)=差+減數(shù) 減數(shù)=被減數(shù)-差乘法:積=因數(shù)×因數(shù) 一個因數(shù)=積÷另一個因數(shù) 除法:商=被除數(shù)÷除數(shù) 被除數(shù)=商×除數(shù) 除數(shù)=被除數(shù)÷商
20.所有的方程都是等式,但等式不一定都是等式。
21.公式:長方形:周長=(長+寬)×2 【長=周長÷2-寬; 寬=周長÷2-長】 字母公式:C=(a+b)×2 面積=長×寬 字母公式:S=ab正方形:周長=邊長×4 字母公式:C=4a 面積=邊長×邊長 字母公式:S=a 平行四邊形:面積=底×高 字母公式: S=ah 三角形:面積=底×高÷2【底=面積×2÷高; 高=面積×2÷底】 字母公式: S=ah÷2 梯形: 面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面積×2÷高-下底,下底=面積×2÷高-上底; 高=面積×2÷(上底+下底)】
22.平行四邊形面積公式推導:剪拼、平移 平行四邊形可以轉化成一個長方形; 長方形的長相當于平行四邊形的底; 長方形的寬相當于平行四邊形的高;長方形的面積等于平行四邊形的面積; 因為長方形面積=長×寬,所以平行四邊形面積=底×高。
23.三角形面積公式推導:旋轉 兩個完全一樣的三角形可以拼成一個平行四邊形; 平行四邊形的底相當于三角形的底; 平行四邊形的高相當于三角形的高;平行四邊形的面積等于三角形面積的2倍; 因為平行四邊形面積=底×高,所以三角形面積=底×高÷2
24.梯形面積公式推導:旋轉 兩個完全一樣的梯形可以拼成一個平行四邊形; 平行四邊形的底相當于梯形的上下底之和; 平行四邊形的高相當于梯形的高;平行四邊形面積等于梯形面積的2倍; 因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
25.等底等高的平行四邊形面積相等;等底等高的三角形面積相等; 等底等高的平行四邊形面積是三角形面積的2倍。
26.長方形框架拉成平行四邊形,周長不變,面積變小。
27.組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。
28.平均數(shù)=總數(shù)量÷總份數(shù)
29.中位數(shù)的優(yōu)點是不受偏大或偏小數(shù)據(jù)的影響,用它代表全體數(shù)據(jù)的一般水平更合適。
30.數(shù)不僅可以用來表示數(shù)量和順序,還可以用來編碼。
31.由6位組成: 前2位表示省(直轄市、自治區(qū)) 前3位表示郵區(qū) 前4位表示縣(市) 最后2位表示投遞局
32.身份證號碼:18位 倒數(shù)第二位的數(shù)字用來表示性別,單數(shù)表示男,雙數(shù)表示女。
小學數(shù)學知識點總結 14
第一單元長度單位
1、常用的長度單位:米、厘米。
2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。
3、測量物體長度的方法:將物體的左端對準直尺的“0”刻度,看物體的右端對著直尺上的刻度是幾,這個物體的長度就是幾厘米。
4、米和厘米的關系:1米=100厘米100厘米=1米
5、線段
、啪段的特點:
、倬段是直的;
②線段有兩個端點;
、劬段有長有短,是可以量出長度的。
⑵畫線段的方法:先用筆對準尺子的’0”刻度,在它的上面點一個點,再對準要畫到的長度的厘米刻度,在它的上面也點一個點,然后把這兩個點連起來,寫出線段的長度。
、菧y量物體的長度時,當不是從“0”刻度量起時,要用終點的刻度數(shù)減去起點的刻度數(shù)。
6、填上合適的.長度單位。
小明身高1(米)30(厘米)
練習本寬13(厘米)
鉛筆長17(厘米)
黑板長2(米)圖釘長1(厘米)
一張床長2(米)一口井深3(米)
學校進行100(米)賽跑
教學樓高25(米)寶寶身高80(厘米)
跳繩長2(米)一棵樹高3(米)
一把鑰匙長5(厘米)
一個文具盒長24(厘米)
講臺高90(厘米)
門高2(米)教室長12(米)
筷子長20(厘米)
一棵小樹苗高1(米)
小朋友的頭圍48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二單元100以內的加法和減法
一、兩位數(shù)加兩位數(shù)
1、兩位數(shù)加兩位數(shù)不進位加法的計算法則:把相同數(shù)位對齊列豎式,在把相同數(shù)位上的數(shù)相加。
2、兩位數(shù)加兩位數(shù)進位加法的計算法則:
、傧嗤瑪(shù)位對齊;
②從個位加起;
、蹅位滿十向十位進1。
3、筆算兩位數(shù)加兩位數(shù)時,相同數(shù)位要對齊,從個位加起,個位滿十要向十位進“1”,十位上的數(shù)相加時,不要遺漏進上來的“1”。
4、和=加數(shù)+加數(shù)
一個加數(shù)=和-另一個加數(shù)
二、兩位數(shù)減兩位數(shù)
1、兩位數(shù)減兩位數(shù)不退位減的筆算:相同數(shù)位對齊列豎式,再把相同數(shù)位上的數(shù)相減
2、兩位數(shù)減兩位數(shù)退位減的筆算法則:①相同數(shù)位對齊;②從個位減起;③個位不夠減,從十位退1,在個位上加10再減。
3、筆算兩位數(shù)減兩位數(shù)時,相同數(shù)位要對齊,從個位減起,個位不夠減,從十位退1,個位加10再減,十位計算時要先減去退走的1再算。
4、差=被減數(shù)-減數(shù)
被減數(shù)=減數(shù)+差
減數(shù)=被減數(shù)+差
三、連加、連減和加減混合
1、連加、連減
連加、連減的筆算順序和連加、連減的口算順序一樣,都是從左往右依次計算。
、龠B加計算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數(shù)相加一樣,都要把相同數(shù)位對齊,從個位加起。
、谶B減運算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數(shù)相減一樣,都要把相同數(shù)位對齊,從個位減起。
2、加減混合
加、減混合算式,其運算順序、豎式寫法都與連加、連減相同。
3、加減混合運算寫豎式時可以分步計算,方法與兩個數(shù)相加(減)一樣,要把相同數(shù)位對齊,從個位算起;也可以用簡便的寫法,列成一個豎式,先完成第一步計算,再用第一步的結果加(減)第二個數(shù)。
四、解決問題(應用題)
1、步驟:
①先讀題
、诹袡M式,寫結果,千萬別忘記寫單位(單位為:多少或者幾后面的那個字或詞)③作答。
2、求“一個已知數(shù)”比“另一個已知數(shù)”多多少、少多少?用減法計算。用“比”字兩邊的較大數(shù)減去較小數(shù)。
3、比一個數(shù)多幾、少幾,求這個數(shù)的問題。先通過關鍵句分析,“比”字前面是大數(shù)還是小數(shù),“比”字后面是大數(shù)還是小數(shù),問題里面要求大數(shù)還是小數(shù),求大數(shù)用加法,求小數(shù)用減法。
4、關于提問題的題目,可以這樣提問:
①…….和……一共…….?
、凇取..多多少/幾……?
③……比……..少多少/幾……?
第三單元元角的初步認識
1、角的初步認識
(1)角是由一個頂點和兩條邊組成的;
(2)畫角的方法:從一個點起,用尺子向不同的方向畫兩條直線。
(3)角的大小與邊的長短沒有關系,與角的兩條邊張開的大小有關,角的兩條邊張開得越大,角就越大,角的兩條邊張開得越小,角就越小。
2、直角的初步認識
(1)直角的判斷方法:用三角尺上的直角比一比(頂點對頂點,一邊對一邊,再看另一條邊是否重合)。
(2)畫直角的方法:
①先畫一個頂點,再從這個點出發(fā)畫一條直線
②用三角尺上的直角頂點對齊這個點,一條直角邊對齊這條線
、墼購倪@點出發(fā)沿著三角尺上的另一條直角邊畫一條線
、茏詈髽顺鲋苯菢酥。
(3)比直角小的是銳角,比直角大的是鈍角:銳角<直角<鈍角。
(4)所有的直角都一樣大
(5)每個三角尺上都有1個直角,兩個銳角。紅領巾上有3個角,其中一個是鈍角,兩個是銳角。一個長方形中和正方形中都是有4個直角。
小學數(shù)學知識點總結 15
角:
。1)角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。
這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
。2)角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。
所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號:∠
角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。
在動態(tài)定義中,取決于旋轉的方向與角度。
角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。
以度、分、秒為單位的角的'度量制稱為角度制。此外,還有密位制、弧度制等。
。1)銳角:大于0°,小于90°的角叫做銳角。
(2)直角:等于90°的角叫做直角。
(3)鈍角:大于90°而小于180°的角叫做鈍角。
乘法:
乘法是指一個數(shù)或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。
乘法算式中各數(shù)的名稱:
“×”是乘號,乘號前面和后面的數(shù)叫做因數(shù),“=”是等于號,等于號后面的數(shù)叫做積。
例:10(因數(shù))×(乘號)200(因數(shù))=(等于號)2000(積)
平行:
在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。
垂直:
兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。
平行四邊形:
在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形。
梯形:
梯形是指一組對邊平行而另一組對邊不平行的四邊形。
平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。
除法:
除法法則:除數(shù)是幾位,先看被除數(shù)的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數(shù)要比除數(shù)小,如果商是小數(shù),商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除數(shù)是小數(shù),要化成除數(shù)是整數(shù)的除法再計算。
小學數(shù)學知識點總結 16
一、知識框架
一級知識點數(shù)與代數(shù)二級知識點數(shù)的運算三級知識點
1、列豎式計算除法。
2、兩位數(shù)除以一位數(shù);
除法的驗算
3、一步計算的問題
4、兩步計算的問題
1、質量單位千克、克數(shù)與代數(shù)常見的量
2、千克、克之間的換算,簡單的實際問題
3、24時計時法空間與圖形空間與圖形統(tǒng)計與概率圖形的認識
從三個方向觀察用小正方體搭成的立體圖形形狀
1.周長的認識
2.長方形、正方形的周長計算描述事件發(fā)生的可能性。
二、期末知識點
第一單元除法(除法是乘法的逆運算)
兩位數(shù)除以一位數(shù)(商是兩位數(shù))的除法。是在二年級(上冊)表內除法和二年級(下冊)有余數(shù)除法的基礎上安排的。
1.計算:列豎式計算除法。
2.口算:被除數(shù)十位和個位上的數(shù)分別除以除數(shù)都沒有余數(shù)的除法,包括整十數(shù)除以一位數(shù)商是整十數(shù)。
3.筆算:兩位數(shù)除以一位數(shù);除法的驗算(用乘法驗算)。
4.估算:估計兩位數(shù)除以一位數(shù)的商是幾十多。
5.一步計算的問題:在解決的實際問題中體會數(shù)量關系?們r÷單價=數(shù)量總價÷數(shù)量=單價
6.兩步計算的問題:先求總和或剩余是多少,再平均分的實際問題。
練習:
。1)用豎式計算,并驗算:62÷266÷672÷347÷7
。2)口算:36÷360÷268÷290÷3
。3)列豎式計算:39÷389÷467÷274÷3
。4)你能估算下面各題的商各是幾十多嗎?64÷584÷395÷481÷3
。5)王老師用72元買筆記本,如果每本單價是2元,那么能買多少本?李老師用60元買了20本筆記本,那么每本筆記本多少錢?
。6)一副乒乓球拍26元,一個乒乓球2元,用50元買一副乒乓球拍,剩下的錢能夠買幾個乒乓球?第二單元認數(shù)1.認數(shù)、讀數(shù)、寫數(shù)。
整千數(shù):數(shù)位與順序,認、讀、寫數(shù),口算整千數(shù)的加、減法,解決實際問題。非整千數(shù):認、讀、寫數(shù),口算整千數(shù)加整百數(shù)及相應的減法,按順序整理數(shù)。
練習:
(1)口算:201+4000800030006000201000+100
。2)寫一寫:兩個千加兩個百加一個十是多少?
。3)三千零二是由幾個千和幾個一組成?
(4)9670是()位數(shù),它的最高位是()位,7在()位上,個位上是()。
2.大小比較
比較大小時的數(shù)學思考,比較大小的實際應用,非整千數(shù)最接近幾千。
練習:
比較大小:3650和2520,7890和8790第三單元千克和克
千克和克都是質量單位,物體含有物質的多少是它的質量。我國人民在生活中習慣以“物體有多重”代替“質量是多少”,因此沒有使用“質量”這個詞,仍然講“有多重”。
1.稱一個物體有多重,一般用千克為單位。
2.凈含量是指包裝袋內物品實際有多重。
3.千克可以用KG表示,又叫公斤。
4.從秤上讀出物品的重量。
5.稱比較輕的物品,一般用克為單位。
6.認識天平。
7.千克和克之間的關系。1千克=1000克。
練習
。1)一袋鹽重500克,兩袋鹽重()克?
。2)2千克=()克
。3)9000克=()千克第四單元加和減
1.口算兩位數(shù)加、減。解決與“倍”或“差”有關的兩步計算實際問題。
練習
口算:44+2532+5714+6876642.畫線段圖解決問題。
練習
手套的價格是12元,帽子的價格是手套的3倍,你能用線段畫出來并算出帽子是多少錢嗎?第五單元24時記時法。
1.24時記時法及它與普通記時法(12時記時法)的聯(lián)系
2.聯(lián)系實際問題求經過時間的基本思路與方法。包括:求整時到整時的經過時間,求非整點時刻間的經過時間。(利用線段圖)。
求經過時間:
記憶:結束時刻開始時刻=經過時間到達的時刻出發(fā)的時刻=經過時間3.兩種計時方式的轉化。
普通記時法與24時記時法的互相轉化普通記時法24時記時法凌晨1時1時
早晨5時5時上午8時8時中午12時12時下午1時13時下午2時14時晚上6時18時晚上7時19時晚上8時20時晚上9時21時
深夜12時24時(也是第二天的0時)
記憶:中午12時以后的.時刻,用24時記時法表示,就用鐘面上的時刻加上12時。中午12時以后的時刻,用普通記時法表示,就用時刻減去12時。
練習
。1)圖書館的的公告牌上面寫著:借書時間:12:0013:30,15:4017:00。圖書館每天的借書時間是多長?
。2)用二十四小時計時法表示,:下午2:00,晚上9:00第六單元長方形和正方形
1.認識長方形和正方形。掌握長方形、正方形的邊與角有什么特點。(長方形對邊相等,四個角都是直角。正方形每條邊都相等,四個角都是直角。通常把長方形的長邊叫做長,短邊叫做寬。把正方形的每一條邊都叫做邊長。)
2.探索、理解周長的含義及計算方法。計算長方形和正方形的周長。(物體某個面上一周邊線的長度就是該物體某個面的周長)。
練習
。1)籃球場長26米,寬14米,求籃球場的周長。
(2)操場長150米,寬70米,小強繞操場跑一周,小強一共跑了多少米?
第七單元乘法
1.三位數(shù)乘一位數(shù)的基本方法。(在二年級下冊已經學習了兩位數(shù)乘一位數(shù))
2.三位數(shù)的中間或末尾是0時的乘法計算。3.連乘計算。練習:
。1)200×3152×4261×3224×5(2)124×3×2115×2×4
(3)一頭牛一天吃20千克草,兩頭牛兩天吃多少千克草?
第八單元觀察物體
安排過一次“觀察物體”,從物體(玩具、茶壺、汽車等)的前面、后面、左面、右面觀察,并選擇適宜的圖形表示看到的物體的形狀。本單元學習“觀察物體”,從物體的正面、側面和上面觀察,并用視圖表示看到的形狀。
1.在知道物體的前面、后面、左面、右面的基礎上,認識物體的正面、側面和上面。
2.在不同的位置觀察,看到的物體的面的個數(shù)往往是不相同的。
3.進行簡單幾何體與其三視圖之間的轉化。
第九單元統(tǒng)計與可能性
學習簡單的統(tǒng)計知識。
練習
在一個口袋里放3個紅球,一個黃球,從袋子里任意摸一個球,摸到紅球的可能性大還是摸到黃球的可能性大?
第十單元認識分數(shù)
理解分數(shù)的意義,認、讀、寫簡單的分數(shù),同分母分數(shù)(分母小于10)的加減計算。
1.分數(shù)的表示:分子、分母、分數(shù)線。
2.同分母分數(shù)比較大小。
3.同分母分數(shù)的加減。
小學數(shù)學知識點總結 17
一、認識數(shù)
(一)、有趣的“0”“一年級0”可以表示沒有,“0”可以參加計算,“0”在數(shù)中起到占位作用,“0”可以表示起點,表示0度。
(二)、基數(shù)與序數(shù)表示物體的多少時,用的是基數(shù);表示物體排列的次序時,用的是序數(shù);鶖(shù)與序數(shù)不同,基數(shù)表示物體的多少,序數(shù)表示物體的排列次序。
二、數(shù)一數(shù)
(一)、數(shù)簡單圖形數(shù)零亂放置的物體或數(shù)某一類圖形的個數(shù)時,應先將所有物體依次標上序號,可以按照序號,順序觀察,數(shù)準指定的圖形。注意對于同一個物體,從不同的角度去觀察,觀察的結果也會不同。因此在數(shù)簡單圖形時,要善于從不同的角度觀察問題、分析問題。
(二)、數(shù)復雜圖形數(shù)復雜圖形時可以按大小分類來數(shù)。
(三)、數(shù)數(shù)按條件的要求去數(shù)。
三、比較數(shù)列
比一比當比較的2個對象整齊的排列時,很容易采用連線比的方法比較出誰多誰少。如果比較的2個對象是雜亂排列的,可以通過數(shù)數(shù)目的方法進行比較。也可以采用分段比的方法。
四、動手做
(一)、擺一擺要善于尋找不同的方法。
(二)、移一移
五、找規(guī)律
(一)、圖形變化的規(guī)律觀察圖形的變化,可以從圖形的形狀、位置、方向、數(shù)量、大小、顏色等方面入手,從中尋找規(guī)律。
(二)、數(shù)列的規(guī)律數(shù)列就是按一定規(guī)律排成的一列數(shù)。怎樣尋找已知數(shù)列的規(guī)律,并按規(guī)律填出指定的某個數(shù)是解題的關鍵。
(三)、數(shù)表的規(guī)律把一些數(shù)按照一定的規(guī)律,填在一個圖形固定的位置上,再把按照這一規(guī)律填出的圖形排列起來。從給出的圖形中尋找規(guī)律,按照規(guī)律填圖是解題的關鍵。
六、填一填
(一)、填數(shù)字給出的算式是一組,不同算式中相同圖形中所填的數(shù)字是相同的。在做這些題時,不要為只填出一個答案而滿足,應找出所有的答案。如果不必要一一列出時,應給以說明,這才是完整、正確的解答。
(二)、填符號比較2個數(shù)的大小,首先要比較2個數(shù)的`位數(shù),位數(shù)多的數(shù)大;其次,當2個數(shù)的位數(shù)相同時,從高位比起,相同數(shù)位上的數(shù)大的那個數(shù)就大。當2個數(shù)各個相同數(shù)位上的數(shù)都分別相同時,這2個數(shù)相等。
七、比較2個算式的大小的方法是:
。1)同一個數(shù)分別加上(或減去)1個相等的數(shù),所得的結果相等;
。2)同一個數(shù)分別加上2個不同的數(shù),所加的哪個數(shù)大,那個算式的結果就大;
。3)同一個數(shù)分別減去2個不同的數(shù),所減的哪個數(shù)小,那個算式的結果就大;
。4)2個不同的數(shù)減去同一個數(shù),哪個被減數(shù)大,那個算式的結果就大。七、說道理做數(shù)學題,每一步都要有理由,要把道理想清楚,說出來。
八、總結
應用題一道簡單的應用題,是由已知條件和所求問題組成的。一般先說題意,再列算式。
小學數(shù)學知識點總結 18
(一)數(shù)與計算
(1)20以內數(shù)的認識。加法和減法。數(shù)數(shù)。數(shù)的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數(shù)的認識。加法和減法。數(shù)數(shù)。個位、十位。數(shù)的`順序、大小、讀法和寫法。兩位數(shù)加、減整十數(shù)和兩位數(shù)加、減一位數(shù)的口算。兩步計算的加減式題。
(二)量與計量
鐘面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯(lián)系的內容。例如根據(jù)本班男、女生人數(shù),每組人數(shù)分布情況,想到哪些數(shù)學問題。
小學數(shù)學知識點總結 19
1.認識人民幣的單位元、角、分和它們的十進關系,認識各種面值的人民幣,能看懂物品的單價,會進行簡單的計算。
2.結合自己的生活經驗和已經掌握的100以內數(shù)的.知識,學習、認識人民幣,一方面初步知道人民幣的基本知識和懂得如何使用人民幣,提高社會實踐能力;另一方面加深對100以內數(shù)的概念的理解。
3.體會數(shù)概念與現(xiàn)實生活的密切聯(lián)系。
4.認識各種面值的人民幣,并會進行簡單的計算。
5.使學生認識人民幣的單位元、角、分,知道1元=10角,1角=10分。
6.通過購物活動,使學生初步體會人民幣在社會生活、商品交換中的功能和作用并知道愛護人民幣。
【小學數(shù)學知識點總結】相關文章:
小學數(shù)學備考知識點總結11-18
小學的數(shù)學知識點總結07-31
小學數(shù)學知識點總結12-05
小學數(shù)學知識點總結06-30
小學數(shù)學知識點總結10-27
小學數(shù)學必備知識點總結整理03-01
北京小學數(shù)學知識點總結04-24
小學數(shù)學知識點總結20篇12-11
小學數(shù)學知識點總結(15篇)11-10