1. <rp id="zsypk"></rp>

      2. 函數(shù)知識點總結

        時間:2024-08-22 12:43:38 知識點總結 我要投稿

        函數(shù)知識點總結15篇[精]

          總結是指對某一階段的工作、學習或思想中的經(jīng)驗或情況加以總結和概括的書面材料,它可以幫助我們有尋找學習和工作中的規(guī)律,不如我們來制定一份總結吧。但是總結有什么要求呢?以下是小編為大家收集的函數(shù)知識點總結,歡迎大家分享。

        函數(shù)知識點總結15篇[精]

        函數(shù)知識點總結1

          基本概念

          1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。

          2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。

          *判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。(x的取值范圍)一次函數(shù)

          1..自變量x和因變量y有如下關系:

          y=kx+b(k為任意不為零實數(shù),b為任意實數(shù))則此時稱y是x的一次函數(shù)。特別的,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為任意不為零實數(shù))

          定義域:自變量的取值范圍,自變量的取值應使函數(shù)有意義;要與實際有意義。2.當x=0時,b為函數(shù)在y軸上的截距。一次函數(shù)性質(zhì):

          1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

          2一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。3.函數(shù)不是數(shù),它是指某一變量過程中兩個變量之間的關系。

          特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系

          當平面直角坐標系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等

          當平面直角坐標系中兩直線垂直時,其函數(shù)解析式中K值互為負倒數(shù)(即兩個K值的乘積為-1)

          應用

          一次函數(shù)y=kx+b的性質(zhì)是:(1)當k>0時,y隨x的增大而增大;(2)當ky2,則x1與x2的大小關系是()

          A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。

          判斷函數(shù)圖象的位置例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D.第四象限

          解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

          (5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。5、函數(shù)的圖像

          一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.

          6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。7、描點法畫函數(shù)圖形的一般步驟

          第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);

          第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的.各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。8、函數(shù)的表示方法

          列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。

          解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。

          圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。9、正比例函數(shù)及性質(zhì)

          一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零解析式:y=kx(k是常數(shù),k≠0)必過點:(0,0)、(1,k)

          走向:k>0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b

          .函數(shù)y=ax+b與y=bx+a的圖象在同一坐標系內(nèi)的大致位置正確的是()

          將直線y=3x向下平移5個單位,得到直線;將直線y=-x-5向上平移5個單位,得到直線.若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.

          已知函數(shù)y=3x+1,當自變量增加m時,相應的函數(shù)值增加()A.3m+1B.3mC.mD.3m-111、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.

          b>0經(jīng)過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時,向上平移;當b

         。1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b①

          和y2=kx2+b②

         。3)解這個二元一次方程,得到k,b的值。(4)最后得到一次函數(shù)的表達式。15、一元一次方程與一次函數(shù)的關系

          任何一元一次方程到可以轉化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

        函數(shù)知識點總結2

          教學目標:

          (1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

          (2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣

          教學重點:能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

          教學難點:求出函數(shù)的自變量的取值范圍。

          教學過程:

          一、問題引新

          1.設矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

          AB長_(m) 1 2 3 4 5 6 7 8 9

          BC長(m) 12

          面積y(m2) 48

          2._的值是否可以任意取?有限定范圍嗎?

          3.我們發(fā)現(xiàn),當AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個函數(shù)的'關系式,教師可提出問題,(1)當AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)

          二、提出問題,解決問題

          1、引導學生看書第二頁問題一、二

          2、觀察概括

          y=6_2 d= n /2 (n-3) y= 20 (1-_)2

          以上函數(shù)關系式有什么共同特點? (都是含有二次項)

          3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

          4、課堂練習

          (1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

          (1)y=5_+1 (2)y=4_2-1

          (3)y=2_3-3_2 (4)y=5_4-3_+1

          (2).P3練習第1,2題。

          五、小結敘述二次函數(shù)的定義.

          第二課時:26.1二次函數(shù)(2)

          教學目標:

          1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。

          2、使學生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質(zhì)的過程,培養(yǎng)學生觀察、思考、歸納的良好思維習慣。

          教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函數(shù)y=a_2的圖象

          教學難點:用描點法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質(zhì)。

        函數(shù)知識點總結3

         。ㄒ唬┖瘮(shù)

          1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。

          2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。一個X對應兩個Y值是錯誤的x判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應;

          3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。

          4、確定函數(shù)定義域的方法:

         。1)關系式為整式時,函數(shù)定義域為全體實數(shù);

          (2)關系式含有分式時,分式的分母不等于零;

         。3)關系式含有二次根式時,被開放方數(shù)大于等于零;

         。4)關系式中含有指數(shù)為零的式子時,底數(shù)不等于零;

         。5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。

          5、函數(shù)的解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做函數(shù)的解析式

          6、函數(shù)的圖像(函數(shù)圖像上的點一定符合函數(shù)表達式,符合函數(shù)表達式的點一定在函數(shù)圖像上)

          一般來說,對于一個函數(shù),如果把自變量與函數(shù)的`每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象;

          運用:求解析式中的參數(shù)、求函數(shù)解釋式;

          7、描點法畫函數(shù)圖形的一般步驟

          第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);函數(shù)表達式為y=3X-2-1-20xx-6-3-6036

          第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點);

          第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。

          8、函數(shù)的表示方法

          列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。

          解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。

          圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。

         。ǘ┮淮魏瘮(shù)1、一次函數(shù)的定義

          一般地,形如ykxb(k,b是常數(shù)(其中k與b的形式較為靈活,但只要抓住函數(shù)基本形式,準確找到k與b,根據(jù)題意求的常數(shù)的取值范圍),且k0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b0時,一次函數(shù)ykx,又叫做正比例函數(shù)。

          ⑴一次函數(shù)的解析式的形式是ykxb,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式;

          ⑵當b0,k0時,ykx仍是一次函數(shù);

          ⑶當b0,k0時,它不是一次函數(shù);

         、日壤瘮(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù);

          2、正比例函數(shù)及性質(zhì)

          一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零

          當k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當k0時,圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,y隨x的增大而增大();k4、一次函數(shù)y=kx+b的圖象的畫法.

          在實際做題中只需要倆點就可以確定函數(shù)圖像,一般我們令X=0求出阿Y的值再令Y=0求出X的值.如圖

          y=kx+b(0,b)解析:(兩點確定一條直線,這兩點我們一般確定在坐標軸上,因為X軸上所有坐標點的縱坐標為0即(x,0)Y軸上所有點的

          (-b/k,0)橫坐標為0即(0,y)這樣作圖既快又準確

          5、正比例函數(shù)與一次函數(shù)之間的關系

          一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b0時,直線經(jīng)過一、三象限;k0,y隨x的增大而增大;(從左向右上升)k0時,將直線y=kx的圖象向上平移b個單位;b。

        函數(shù)知識點總結4

          一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現(xiàn)。

          主要考察內(nèi)容:

          ①會畫一次函數(shù)的圖像,并掌握其性質(zhì)。

         、跁鶕(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

         、勰苡靡淮魏瘮(shù)解決實際問題。

         、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關系。

          突破方法:

         、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

          ②運用數(shù)學結合的思想解與一次函數(shù)圖像有關的問題。

         、壅莆沼么ㄏ禂(shù)法球一次函數(shù)解析式。

          ④做一些綜合題的訓練,提高分析問題的能力。

          函數(shù)性質(zhì):

          1.y的變化值與對應的`x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。

          2.當x=0時,b為函數(shù)在y軸上的點,坐標為(0,b)。

          3當b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

          4.在兩個一次函數(shù)表達式中:

          當兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

          1、作法與圖形:通過如下3個步驟:

          (1)列表.

         。2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。

          正比例函數(shù)y=kx(k≠0)的圖象是過坐標原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是-k分之b與0,0與b).

          2、性質(zhì):

         。1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

         。2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點。

          3、函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關系。

          4、k,b與函數(shù)圖像所在象限:

          y=kx時(即b等于0,y與x成正比例):

          當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數(shù)的圖象經(jīng)過第一、二、三象限;當k>0,b

        函數(shù)知識點總結5

          一、函數(shù)的概念與表示

          1、映射

          (1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

          注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

          2、函數(shù)

          構成函數(shù)概念的三要素

         、俣x域②對應法則③值域

          兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

          二、函數(shù)的解析式與定義域

          1、求函數(shù)定義域的主要依據(jù):

          (1)分式的分母不為零;

          (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

          (3)對數(shù)函數(shù)的真數(shù)必須大于零;

          (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

          三、函數(shù)的值域

          1求函數(shù)值域的方法

         、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復合函數(shù);

         、趽Q元法:利用換元法將函數(shù)轉化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

         、叟袆e式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

          ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

         、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

          ⑥圖象法:二次函數(shù)必畫草圖求其值域;

         、呃脤μ柡瘮(shù)

          ⑧幾何意義法:由數(shù)形結合,轉化距離等求值域。主要是含絕對值函數(shù)

          四.函數(shù)的奇偶性

          1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

          如果對于任意∈A,都有,則稱y=f(x)為奇

          函數(shù)。

          2.性質(zhì):

         、賧=f(x)是偶函數(shù)y=f(x)的`圖象關于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關于原點對稱,

          ②若函數(shù)f(x)的定義域關于原點對稱,則f(0)=0

          ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關于原點對稱]

          3.奇偶性的判斷

         、倏炊x域是否關于原點對稱②看f(x)與f(-x)的關系

          五、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義:

          2設是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

        函數(shù)知識點總結6

          一次函數(shù)的定義

          一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b=0時,一次函數(shù)y=kx,又叫做正比例函數(shù)。

          1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。

          2、當b=0,k≠0時,y=kx仍是一次函數(shù)。

          3、當k=0,b≠0時,它不是一次函數(shù)。

          4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。

          一次函數(shù)的圖像及性質(zhì)

          1、在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。

          2、一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)。

          3、正比例函數(shù)的圖像總是過原點。

          4、k,b與函數(shù)圖像所在象限的關系:

          當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

          當k>0,b>0時,直線通過一、二、三象限;

          當k>0,b<0時,直線通過一、三、四象限;

          當k<0,b>0時,直線通過一、二、四象限;

          當k<0,b<0時,直線通過二、三、四象限;

          當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

          一次函數(shù)的圖象與性質(zhì)的口訣

          一次函數(shù)是直線,圖象經(jīng)過三象限;

          正比例函數(shù)更簡單,經(jīng)過原點一直線;

          兩個系數(shù)k與b,作用之大莫小看,

          k是斜率定夾角,b與y軸來相見,

          k為正來右上斜,x增減y增減;

          k為負來左下展,變化規(guī)律正相反;

          k的絕對值越大,線離橫軸就越遠。

          拓展閱讀:一次函數(shù)的解題方法

          理解一次函數(shù)和其它知識的聯(lián)系

          一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

          掌握一次函數(shù)的解析式的特征

          一次函數(shù)解析式的結構特征:kx+b是關于x的一次二項式,其中常數(shù)b可以是任意實數(shù),一次項系數(shù)k必須是非零數(shù),k≠0,因為當k = 0時,y = b(b是常數(shù)),由于沒有一次項,這樣的函數(shù)不是一次函數(shù);而當b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

          應用一次函數(shù)解決實際問題

          1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯(lián)的量,且其中一種量因另一種量的變化而變化;

          2、找出具有相關聯(lián)的兩種量的.等量關系之后,明確哪種量是另一種量的函數(shù);

          3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數(shù);

          4、求一次函數(shù)與正比例函數(shù)的關系式,一般采取待定系數(shù)法。

          數(shù)形結合

          方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數(shù)。

          如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對應點平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

        函數(shù)知識點總結7

          一次函數(shù)y=kx+b的性質(zhì):(一次函數(shù)的圖像是一條直線)

          1、一次函數(shù)ykxb(k0)經(jīng)過(0,與y軸)點,(,0)點.與x軸交點坐標是(,0)交點坐標是(0,)。

          2、k的正、負決定直線的傾斜方向

          當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

          3、|k|的.大小決定直線的傾斜程度

          |k|越大,直線與x軸相交的銳角度數(shù)越大(直線陡);|k|越小,直線與x軸相交的銳角度數(shù)越。ㄖ本緩);

          4、b的正負決定直線與y軸交點的位置當b>0時,直線與y軸交于y軸正半軸上;當b<0時,直線與y軸交于y軸負半軸上;當b=0時,直線經(jīng)過原點。

          5、k、b的符號不同,直線經(jīng)過的象限也不同。

          當k>0時,直線經(jīng)過一、三象限;當k<0時,圖像經(jīng)過二、四象限。進一步:

          當k>0,b>0時,直線經(jīng)過一、二、三象限(不經(jīng)過第四象限)當k>0,b<0時,直線經(jīng)過一、三、四象限(不經(jīng)過第二象限)當k>0,b=0時,直線經(jīng)過一、三、象限和原點

          當k<0,b>0時,直線經(jīng)過一、二、四象限(不經(jīng)過第三象限)當k<0,b<0時,直線經(jīng)過二、三、四象限(不經(jīng)過第一象限)當k<0,b=0時,直線經(jīng)過二、四、象限和原點

          反過來:不經(jīng)過第一象限指:經(jīng)過二、三、四象限或經(jīng)過二四象限和原點。其它類似。

        函數(shù)知識點總結8

          I.定義與定義表達式

          一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數(shù)。

          二次函數(shù)表達式的右邊通常為二次三項式。

          II.二次函數(shù)的三種表達式

          一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(_-h)^2+k[拋物線的'頂點P(h,k)]

          交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標系中作出二次函數(shù)y=_^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。

          對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

          2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

          4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab<0),對稱軸在y軸右。

          5.常數(shù)項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與_軸交點個數(shù)

          Δ=b^2-4ac>0時,拋物線與_軸有2個交點。

          Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

          Δ=b^2-4ac<0時,拋物線與_軸沒有交點。

          _的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

          V.二次函數(shù)與一元二次方程

          特別地,二次函數(shù)(以下稱函數(shù))y=a_^2+b_+c,

          當y=0時,二次函數(shù)為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

          此時,函數(shù)圖像與_軸有無交點即方程有無實數(shù)根。函數(shù)與_軸交點的橫坐標即為方程的根。

        函數(shù)知識點總結9

          特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

          當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax+bx+c=0。

          此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

          1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當h>0時,y=a(x-h)的圖象可由拋物線y=ax向右平行移動h個單位得到。

          當h<0時,則向xxx移動|h|個單位得到。

          當h>0,k>0時,將拋物線y=ax向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

          當h>0,k<0時,將拋物線y=ax向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。

          當h<0,k>0時,將拋物線向xxx移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)+k的圖象。

          當h<0,k<0時,將拋物線向xxx移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。

          因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

          2.拋物線y=ax+bx+c(a≠0)的.圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b]/4a)。

          3.拋物線y=ax+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。

          4.拋物線y=ax+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c)。

          (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點間的距離AB=|x-x|。

          當△=0.圖象與x軸只有一個交點;當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0。

          5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b)/4a。

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax+bx+c(a≠0)。

          (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)+k(a≠0)。

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

        函數(shù)知識點總結10

          一:函數(shù)及其表示

          知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

          1. 函數(shù)與映射的區(qū)別:

          2. 求函數(shù)定義域

          常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

         、佼攆(x)為整式時,函數(shù)的定義域為R.

         、诋攆(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。

         、郛攆(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。

          ④當f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的`實數(shù)集合。

         、萑绻鹒(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。

          ⑥復合函數(shù)的定義域是復合的各基本的函數(shù)定義域的交集。

         、邔τ谟蓪嶋H問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。

          3. 求函數(shù)值域

          (1)、觀察法:通過對函數(shù)定義域、性質(zhì)的觀察,結合函數(shù)的解析式,求得函數(shù)的值域;

          (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

          (3)、判別式法:

          (4)、數(shù)形結合法;通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域;

          (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域;

          (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調(diào)的,那么就可以利用端點的函數(shù)值來求出值域;

          (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

          (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

          (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉化為求反函數(shù)的定義域。

        函數(shù)知識點總結11

          1.函數(shù)的定義

          函數(shù)是高考數(shù)學中的重點內(nèi)容,學習函數(shù)需要首先掌握函數(shù)的各個知識點,然后運用函數(shù)的各種性質(zhì)來解決具體的問題。

          設A、B是非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A-B為從集合A到集合B的一個函數(shù),記作y=f(x),xA

          2.函數(shù)的定義域

          函數(shù)的定義域分為自然定義域和實際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實際問題確定的,這時應根據(jù)自變量的實際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。

          3.求解析式

          求函數(shù)的解析式一般有三種種情況:

         。1)根據(jù)實際問題建立函數(shù)關系式,這種情況需引入合適的變量,根據(jù)數(shù)學的.有關知識找出函數(shù)關系式。

          (2)有時體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。

          (3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質(zhì)了解且熟悉。

          目前我們已經(jīng)學習了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復合的一些相對較復雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。

        函數(shù)知識點總結12

          倍角公式

          二倍角公式

          正弦形式:sin2α=2sinαcosα

          正切形式:tan2α=2tanα/(1-tan^2(α))

          余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

          三倍角公式

          sin3α=4sinα·sin(π/3+α)sin(π/3-α)

          cos3α=4cosα·cos(π/3+α)cos(π/3-α)

          tan3a=tana·tan(π/3+a)·tan(π/3-a)

          四倍角公式

          sin4A=-4*(cosA*sinA*(2*sinA^2-1))

          cos4A=1+(-8*cosA^2+8*cosA^4)

          tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

          半角公式

          正弦

          sin(A/2)=√((1-cosA)/2)

          sin(A/2)=-√((1-cosA)/2)

          余弦

          cos(A/2)=√((1+cosA)/2)

          cos(A/2)=-√((1+cosA)/2)

          正切

          tan(A/2)=√((1-cosA)/((1+cosA))

          tan(A/2)=-√((1-cosA)/((1+cosA))

          積化和差

          sina*cosb=[sin(a+b)+sin(a-b)]/2

          cosa*sinb=[sin(a+b)-sin(a-b)]/2

          cosa*cosb=[cos(a+b)+cos(a-b)]/2

          sina*sinb=[cos(a-b)-cos(a+b)]/2

          和差化積

          sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

          sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

          cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

          cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

          誘導公式

          任意角α與-α的三角函數(shù)值之間的關系:

          sin(-α)=-sinα

          cos(-α)=cosα

          tan(-α)=-tanα

          cot(-α)=-cotα

          設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:

          sin(π+α)=-sinα

          cos(π+α)=-cosα

          tan(π+α)=tanα

          cot(π+α)=cotα

          利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:

          sin(π-α)=sinα

          cos(π-α)=-cosα

          tan(π-α)=-tanα

          cot(π-α)=-cotα

          設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2kπ+α)=sinα(k∈Z)

          cos(2kπ+α)=cosα(k∈Z)

          tan(2kπ+α)=tanα(k∈Z)

          cot(2kπ+α)=cotα(k∈Z)

          利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:

          sin(2π-α)=-sinα

          cos(2π-α)=cosα

          tan(2π-α)=-tanα

          cot(2π-α)=-cotα

          π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:

          sin(π/2+α)=cosα

          cos(π/2+α)=-sinα

          tan(π/2+α)=-cotα

          cot(π/2+α)=-tanα

          sin(π/2-α)=cosα

          cos(π/2-α)=sinα

          tan(π/2-α)=cotα

          cot(π/2-α)=tanα

          sin(3π/2+α)=-cosα

          cos(3π/2+α)=sinα

          tan(3π/2+α)=-cotα

          cot(3π/2+α)=-tanα

          sin(3π/2-α)=-cosα

          cos(3π/2-α)=-sinα

          tan(3π/2-α)=cotα

          cot(3π/2-α)=tanα

          (以上k∈Z)

          拓展閱讀:三角函數(shù)常用知識點

          1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

          2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

          3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

          4、任意銳角的正切值等于它的`余角的余切值;任意銳角的余切值等于它的余角的正切值。

          5、正弦、余弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

          6、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

        函數(shù)知識點總結13

          f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。

          ⑴函數(shù)區(qū)間單調(diào)性的判斷思路

         、≡诮o出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1

          ⅱ做差值f(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾摰男问健?/p>

         、E袛嘧冃魏蟮谋磉_式f(x1)-f(x2)的符號,指出單調(diào)性。

          ⑵復合函數(shù)的單調(diào)性

          復合函數(shù)y=f[g(x)]的單調(diào)性與構成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關,其規(guī)律為“同增異減”;多個函數(shù)的復合函數(shù),根據(jù)原則“減偶則增,減奇則減”。

         、亲⒁馐马

          函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。

          2、函數(shù)的整體性質(zhì)——奇偶性

          對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);

          對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。

          小編推薦:高中數(shù)學必考知識點歸納總結

         、牌婧瘮(shù)和偶函數(shù)的性質(zhì)

         、o論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關于原點對稱。

         、⑵婧瘮(shù)的圖像關于原點對稱,偶函數(shù)的圖像關于y軸對稱。

          ⑵函數(shù)奇偶性判斷思路

         、∠却_定函數(shù)的定義域是否關于原點對稱,若不關于原點對稱,則為非奇非偶函數(shù)。

         、⒋_定f(x)和f(-x)的關系:

          若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);

          若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。

          3、函數(shù)的最值問題

         、艑τ诙魏瘮(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。

         、茖τ谝子诋嫵龊瘮(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。

         、顷P于二次函數(shù)在閉區(qū)間的`最值問題

         、∨袛喽魏瘮(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。

         、⑷舳魏瘮(shù)的頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a

          ⅲ若二次函數(shù)的頂點不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性

          若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);

          若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

          3高一數(shù)學基本初等函數(shù)1、指數(shù)函數(shù):函數(shù)y=ax (a>0且a≠1)叫做指數(shù)函數(shù)

          a的取值a>1 0

          注意:⑴由函數(shù)的單調(diào)性可以看出,在閉區(qū)間[a,b]上,指數(shù)函數(shù)的最值為:

          a>1時,最小值f(a),最大值f(b);0

          ⑵對于任意指數(shù)函數(shù)y=ax (a>0且a≠1),都有f(1)=a。

          2、對數(shù)函數(shù):函數(shù)y=logax(a>0且a≠1)),叫做對數(shù)函數(shù)

          a的取值a>1 0

          3、冪函數(shù):函數(shù)y=xa(a∈R),高中階段,冪函數(shù)只研究第I象限的情況。

         、潘袃绾瘮(shù)都在(0,+∞)區(qū)間內(nèi)有定義,而且過定點(1,1)。

         、芶>0時,冪函數(shù)圖像過原點,且在(0,+∞)區(qū)間為增函數(shù),a越大,圖像坡度越大。

          ⑶a

          當x從右側無限接近原點時,圖像無限接近y軸正半軸;

          當y無限接近正無窮時,圖像無限接近x軸正半軸。

          冪函數(shù)總圖見下頁。

          4、反函數(shù):將原函數(shù)y=f(x)的x和y互換即得其反函數(shù)x=f-1(y)。

          反函數(shù)圖像與原函數(shù)圖像關于直線y=x對稱。

        函數(shù)知識點總結14

          1、定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a

          二次函數(shù)表達式的右邊通常為二次三項式。

          2、二次函數(shù)的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)]

          交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點a(x,0)和b(x,0)的拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

          3、二次函數(shù)的圖像

          在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          4、拋物線的性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。

          對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a

          4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab

          5.常數(shù)項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與x軸交點個數(shù)

          δ= b^2-4ac>0時,拋物線與x軸有2個交點。

          δ= b^2-4ac=0時,拋物線與x軸有1個交點。

          δ= b^2-4ac

          5、二次函數(shù)與一元二次方程

          特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

          當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

          此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

          1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸:

          當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當h

          當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

          當h>0,k

          當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當h

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的'增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a

          4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c);

          (2)當△=b^2-4ac>0,圖象與x軸交于兩點a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點間的距離ab=|x-x|

          當△=0.圖象與x軸只有一個交點;

          當△0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).

          7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

        函數(shù)知識點總結15

          總體上必須清楚的:

          1)程序結構是三種:順序結構、選擇結構(分支結構)、循環(huán)結構。

          2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個main函數(shù)。

          3)計算機的數(shù)據(jù)在電腦中保存是以二進制的形式.數(shù)據(jù)存放的位置就是他的地址.

          4)bit是位是指為0或者1。 byte是指字節(jié),一個字節(jié)=八個位.

          概念?嫉降模

          1、編譯預處理不是C語言的一部分,不占運行時間,不要加分號。C語言編譯的程序稱為源程序,它以ASCII數(shù)值存放在文本文件中。

          2、define PI 3.1415926;這個寫法是錯誤的,一定不能出現(xiàn)分號。 -

          3、每個C語言程序中main函數(shù)是有且只有一個。

          4、在函數(shù)中不可以再定義函數(shù)。

          5、算法:可以沒有輸入,但是一定要有輸出。

          6、break可用于循環(huán)結構和switch語句。

          7、逗號運算符的級別最低,賦值的級別倒數(shù)第二。

          第一章C語言的基礎知識

          第一節(jié)、對C語言的基礎認識

          1、C語言編寫的程序稱為源程序,又稱為編譯單位。

          2、C語言書寫格式是自由的,每行可以寫多個語句,可以寫多行。

          3、一個C語言程序有且只有一個main函數(shù),是程序運行的起點。

          第二節(jié)、熟悉vc++

          1、VC是軟件,用來運行寫的C語言程序。

          2、每個C語言程序?qū)懲旰螅际窍染幾g,后鏈接,最后運行。(.c—.obj—.exe)這個過程中注意.c和.obj文件時無法運行的,只有.exe文件才可以運行。(?迹。

          第三節(jié)、標識符

          1、標識符(必考內(nèi)容):

          合法的要求是由字母,數(shù)字,下劃線組成。有其它元素就錯了。

          并且第一個必須為字母或則是下劃線。第一個為數(shù)字就錯了

          2、標識符分為關鍵字、預定義標識符、用戶標識符。

          關鍵字:不可以作為用戶標識符號。main define scanf printf都不是關鍵字。迷惑你的地方If是可以做為用戶標識符。因為If中的第一個字母大寫了,所以不是關鍵字。

          預定義標識符:背誦define scanf printf include。記住預定義標識符可以做為用戶標識符。

          用戶標識符:基本上每年都考,詳細請見書上習題。

          第四節(jié):進制的轉換

          十進制轉換成二進制、八進制、十六進制。

          二進制、八進制、十六進制轉換成十進制。

          第五節(jié):整數(shù)與實數(shù)

          1)C語言只有八、十、十六進制,沒有二進制。但是運行時候,所有的進制都要轉換成二進制來進行處理。(考過兩次)

          a、C語言中的八進制規(guī)定要以0開頭。018的數(shù)值是非法的,八進制是沒有8的,逢8進1。

          b、C語言中的十六進制規(guī)定要以0x開頭。

          2)小數(shù)的合法寫法:C語言小數(shù)點兩邊有一個是零的話,可以不用寫。

          1.0在C語言中可寫成1.

          0.1在C語言中可以寫成.1。

          3)實型數(shù)據(jù)的合法形式:

          a、2.333e-1就是合法的,且數(shù)據(jù)是2.333×10-1。

          b、考試口訣:e前e后必有數(shù),e后必為整數(shù)。請結合書上的例子。

          4)整型一般是4個字節(jié),字符型是1個字節(jié),雙精度一般是8個字節(jié):

          long int x;表示x是長整型。

          unsigned int x;表示x是無符號整型。

          第六、七節(jié):算術表達式和賦值表達式

          核心:表達式一定有數(shù)值!

          1、算術表達式:+,-,*,/,%

          考試一定要注意:“/”兩邊都是整型的話,結果就是一個整型。 3/2的結果就是1.

          “/”如果有一邊是小數(shù),那么結果就是小數(shù)。 3/2.0的結果就是0.5

          “%”符號請一定要注意是余數(shù),考試最容易算成了除號。)%符號兩邊要求是整數(shù)。不是整數(shù)就錯了。[注意!!!]

          2、賦值表達式:表達式數(shù)值是最左邊的數(shù)值,a=b=5;該表達式為5,常量不可以賦值。

          1、int x=y=10:錯啦,定義時,不可以連續(xù)賦值。

          2、int x,y;

          x=y=10;對滴,定義完成后,可以連續(xù)賦值。

          3、賦值的左邊只能是一個變量。

          4、int x=7.7;對滴,x就是7

          5、float y=7;對滴,x就是7.0

          3、復合的賦值表達式:

          int a=2;

          a*=2+3;運行完成后,a的值是12。

          一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運算。

          4、自加表達式:

          自加、自減表達式:假設a=5,++a(是為6),a++(為5);

          運行的機理:++a是先把變量的數(shù)值加上1,然后把得到的數(shù)值放到變量a中,然后再用這個++a表達式的數(shù)值為6,而a++是先用該表達式的數(shù)值為5,然后再把a的數(shù)值加上1為6,

          再放到變量a中。進行了++a和a++后在下面的程序中再用到a的話都是變量a中的6了。

          考試口訣:++在前先加后用,++在后先用后加。

          5、逗號表達式:

          優(yōu)先級別最低。表達式的數(shù)值逗號最右邊的那個表達式的數(shù)值。

         。2,3,4)的表達式的`數(shù)值就是4。

          z=(2,3,4)(整個是賦值表達式)這個時候z的值為4。(有點難度哦。

          z= 2,3,4(整個是逗號表達式)這個時候z的值為2。

          補充:

          1、空語句不可以隨意執(zhí)行,會導致邏輯錯誤。

          2、注釋是最近幾年考試的重點,注釋不是C語言,不占運行時間,沒有分號。不可以嵌套!

          3、強制類型轉換:

          一定是(int)a不是int(a),注意類型上一定有括號的。

          注意(int)(a+b)和(int)a+b的區(qū)別。前是把a+b轉型,后是把a轉型再加b。

          4、三種取整丟小數(shù)的情況:

         。、int a =1.6;

         。病(int)a;

         。场1/2;3/2;

          第八節(jié)、字符

          1)字符數(shù)據(jù)的合法形式::

          ‘1’是字符占一個字節(jié),”1”是字符串占兩個字節(jié)(含有一個結束符號)。

          ‘0’的ASCII數(shù)值表示為48,’a’的ASCII數(shù)值是97,’A’的ASCII數(shù)值是65。

          一般考試表示單個字符錯誤的形式:’65’ “1”

          字符是可以進行算術運算的,記。骸0’-0=48

          大寫字母和小寫字母轉換的方法:‘A’+32=’a’相互之間一般是相差32。

          2)轉義字符:

          轉義字符分為一般轉義字符、八進制轉義字符、十六進制轉義字符。

          一般轉義字符:背誦/0、、 ’、 ”、 。

          八進制轉義字符:‘141’是合法的,前導的0是不能寫的。

          十六進制轉義字符:’x6d’才是合法的,前導的0不能寫,并且x是小寫。

          3、字符型和整數(shù)是近親:兩個具有很大的相似之處

          char a = 65 ;

          printf(“%c”, a);得到的輸出結果:a

          printf(“%d”, a);得到的輸出結果:65

          第九節(jié)、位運算

          1)位運算的考查:會有一到二題考試題目。

          總的處理方法:幾乎所有的位運算的題目都要按這個流程來處理(先把十進制變成二進制再變成十進制)。

          例1:char a = 6, b;

          b = a<<2;這種題目的計算是先要把a的十進制6化成二進制,再做位運算。

          例2:一定要記住,異或的位運算符號” ^ ”。0異或1得到1。

          0異或0得到0。兩個女的生不出來。

          考試記憶方法:一男(1)一女(0)才可以生個小孩(1)。

          例3:在沒有舍去數(shù)據(jù)的時候,<<左移一位表示乘以2;>>右移一位表示除以2。

        【函數(shù)知識點總結】相關文章:

        函數(shù)知識點總結06-23

        函數(shù)知識點總結02-10

        函數(shù)知識點總結【熱門】08-21

        函數(shù)知識點總結(精)08-21

        函數(shù)知識點03-01

        [精選]函數(shù)知識點03-01

        初二函數(shù)知識點總結01-13

        關于高中函數(shù)的知識點總結03-30

        初中數(shù)學函數(shù)知識點總結04-08

        函數(shù)知識點總結20篇04-20

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>