八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
在日常的學(xué)習(xí)中,看到知識(shí)點(diǎn),都是先收藏再說吧!知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編整理的八年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié),歡迎大家分享。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1
第一章分式
1、分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2、分式的運(yùn)算
。1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
。2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p
3、整數(shù)指數(shù)冪的加減乘除法
4、分式方程及其解法
第二章反比例函數(shù)
1、反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2、反比例函數(shù)在實(shí)際問題中的應(yīng)用
第三章勾股定理
1、勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的。平方
2、勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形
第四章四邊形
1、平行四邊形
性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。
判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;
兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線互相平分的四邊形是平行四邊形;
一組對(duì)邊平行而且相等的`四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對(duì)角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
。2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2
1、等式與等量:用
"="號(hào)連接而成的式子叫等式。注意:"等量就能代入"!
2、等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個(gè)不為零的數(shù),所得結(jié)果仍是等式。
3、方程:含未知數(shù)的等式,叫方程。
4、方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:"方程的解就能代入"!
5、移項(xiàng):改變符號(hào)后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng)。移項(xiàng)的依據(jù)是等式性質(zhì)1.
6、一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
7、一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
8、一元一次方程的最簡(jiǎn)形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。
9、一元一次方程解法的'一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1……(檢驗(yàn)方程的解)。
10、列一元一次方程解應(yīng)用題:
。1)讀題分析法:…………多用于"和,差,倍,分問題"
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。
。2)畫圖分析法:…………多用于"行程問題"
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3
數(shù)據(jù)的分析
1、算術(shù)平均數(shù):
2、加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。
權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。
而是以比的或百分比的形式出現(xiàn)及頻數(shù)分布表求加權(quán)平均數(shù)的方法。
3、將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的'個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
4、一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
5、一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
6、 方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。
數(shù)據(jù)的收集與整理的步驟:
1、收集數(shù)據(jù)
2、整理數(shù)據(jù)
3、描述數(shù)據(jù)
4、分析數(shù)據(jù)
5、撰寫調(diào)查報(bào)告
6、交流
7、 平均數(shù)受極端值的影響眾數(shù)不受極端值的影響,這是一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4
1、無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:
開方開不盡的數(shù),如√7 , 3 √2等;
有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如π/61+8等;
某些三角函數(shù)值,如sin60 0等
2、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值
、傧喾磾(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
、诮^對(duì)值
在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=—a,則a≤0。
③倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。
、軘(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
、莨浪
3、平方根、算數(shù)平方根和立方根
、偎阈g(shù)平方根
一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:記作“ ”,讀作根號(hào)a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。
、谄椒礁
一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根記做“ ”,讀作“正、負(fù)根號(hào)a”。
性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方。注意√a的雙重非負(fù)性:√a≥0 ; a ≥0
、哿⒎礁
一般地,如果一個(gè)數(shù)x的立方等于a,即x3=a那么這個(gè)數(shù)x就叫做a的.立方根(或三次方根)。
表示方法:記作3 √ a
性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。
注意:— 3 √ a= 3 √— a,這說明三次根號(hào)內(nèi)的負(fù)號(hào)可以移到根號(hào)外面。
4、實(shí)數(shù)大小的比較
①實(shí)數(shù)比較大小
正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);
數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;
兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
、趯(shí)數(shù)大小比較的幾種常用方法
數(shù)軸比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
求差比較:設(shè)a、b是實(shí)數(shù)a—b>062 a > b ; a—b=062 a =b a—b<062 a < b
求商比較法:設(shè)a、b是兩正實(shí)數(shù),絕對(duì)值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則∣a ∣ > ∣b ∣ 62 a < b 。
平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則a 2 > b 2 62 a < b 。
5、算術(shù)平方根有關(guān)計(jì)算(二次根式)
①含有二次根號(hào)“ √ ”;
②被開方數(shù)a必須是非負(fù)數(shù)。
③運(yùn)算結(jié)果若含有“ √ ”形式,必須滿足
被開方數(shù)的因數(shù)是整數(shù),因式是整式
被開方數(shù)中不含能開得盡方的因數(shù)或因式
6、實(shí)數(shù)的運(yùn)算
、倭N運(yùn)算:加、減、乘、除、乘方、開方
、趯(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號(hào),就先算括號(hào)里面的。
、圻\(yùn)算律
加法交換律a+b=b+a
加法結(jié)合律( a+b)+c =a+( b+c)
乘法交換律ab=ba
乘法結(jié)合律(ab)c =a( bc)
乘法對(duì)加法的分配律a( b+c) = ab +ac
初中數(shù)學(xué)垂直平分線定理
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
數(shù)學(xué)學(xué)習(xí)思維方法
1、邏輯法
邏輯是一切思考的基礎(chǔ)。邏輯思維,是人們?cè)谡J(rèn)識(shí)過程中借助于概念、判斷、推理等思維形式對(duì)事物進(jìn)行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。邏輯思維,在解決邏輯推理問題時(shí)使用廣泛。
2、逆向思維法
逆向思維也叫求異思維,它是對(duì)司空見慣的似乎已成定論的事物或觀點(diǎn)反過來思考的一種思維方式。敢于“反其道而思之”,讓思維向?qū)α⒚娴姆较虬l(fā)展,從問題的相反面深入地進(jìn)行探索,樹立新思想,創(chuàng)立新形象。
3、分類法
根據(jù)事物的共同點(diǎn)和差異點(diǎn)將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點(diǎn)將它們合為較大的類,又依據(jù)差異點(diǎn)將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5
一、函數(shù):
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
第七章知識(shí)點(diǎn)
1、二元一次方程
含有兩個(gè)未知數(shù),并且所含未知數(shù)的'項(xiàng)的次數(shù)都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
3、二元一次方程組
含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
5、二元一次方程組的解法
。1)代入(消元)法(2)加減(消元)法
第八章知識(shí)點(diǎn)
1、刻畫數(shù)據(jù)的集中趨勢(shì)(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(2)加權(quán)平均數(shù):
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6
平行四邊形定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;
平行四邊形的對(duì)角相等。
平行四邊形的對(duì)角線互相平分。
平行四邊形的判定
1、兩組對(duì)邊分別相等的四邊形是平行四邊形
2、對(duì)角線互相平分的四邊形是平行四邊形;
3、兩組對(duì)角分別相等的四邊形是平行四邊形;
4、一組對(duì)邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個(gè)角是直角的平行四邊形。
矩形的性質(zhì): 矩形的四個(gè)角都是直角;
矩形的對(duì)角線平分且相等。AC=BD
矩形判定定理:
1、有一個(gè)角是直角的平行四邊形叫做矩形。
2、對(duì)角線相等的平行四邊形是矩形。
3、有三個(gè)角是直角的四邊形是矩形。
菱形的定義 :鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;
菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
菱形的判定定理:
1、一組鄰邊相等的平行四邊形是菱形。
2、對(duì)角線互相垂直的平行四邊形是菱形。
3、四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對(duì)角線)
正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理:
1、鄰邊相等的矩形是正方形。 2.有一個(gè)角是直角的菱形是正方形。
梯形的定義: 一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個(gè)角是直角的梯形
等腰梯形的`定義:兩腰相等的梯形。
等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;
等腰梯形的兩條對(duì)角線相等。
等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點(diǎn)。 平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。 三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。 寬和長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7
1、分式的定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子叫做分式。
分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零
2、分式的基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。
3、分式的通分和約分:關(guān)鍵先是分解因式
4、分式的運(yùn)算:
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。分式乘方法則:分式乘方要把分子、分母分別乘方。
分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變?yōu)橥帜阜质,然后再加減
混合運(yùn)算:運(yùn)算順序和以前一樣。能用運(yùn)算率簡(jiǎn)算的可用運(yùn)算率簡(jiǎn)算。
5、任何一個(gè)不等于零的數(shù)的零次冪等于1,即;當(dāng)n為正整數(shù)時(shí)
6、正整數(shù)指數(shù)冪運(yùn)算性質(zhì)也可以推廣到整數(shù)指數(shù)冪、(m,n是整數(shù))
。1)同底數(shù)的冪的乘法:;
。2)冪的乘方:;
。3)積的乘方:;
(4)同底數(shù)的.冪的除法:(a≠0);
。5)商的乘方:();(b≠0)
7、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。
解分式方程的過程,實(shí)質(zhì)上是將方程兩邊同乘以一個(gè)整式(最簡(jiǎn)公分母),把分式方程轉(zhuǎn)化為整式方程。
解分式方程時(shí),方程兩邊同乘以最簡(jiǎn)公分母時(shí),最簡(jiǎn)公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。
解分式方程的步驟:
(1)能化簡(jiǎn)的先化簡(jiǎn)
。2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;
(3)解整式方程;
。4)驗(yàn)根、
增根應(yīng)滿足兩個(gè)條件:一是其值應(yīng)使最簡(jiǎn)公分母為0,二是其值應(yīng)是去分母后所的整式方程的根。
分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。
列方程應(yīng)用題的步驟是什么?
。1)審;
。2)設(shè);
(3)列;
(4)解;
(5)答、
應(yīng)用題有幾種類型;基本公式是什么?基本上有五種:
。1)行程問題:基本公式:路程=速度×?xí)r間而行程問題中又分相遇問題、追及問題、
。2)數(shù)字問題在數(shù)字問題中要掌握十進(jìn)制數(shù)的表示法、
(3)工程問題基本公式:工作量=工時(shí)×工效
。4)順?biāo)嫠畣栴}v順?biāo)?v靜水+v水、 v逆水=v靜水—v水、
8、科學(xué)記數(shù)法:把一個(gè)數(shù)表示成的形式(其中,n是整數(shù))的記數(shù)方法叫做科學(xué)記數(shù)法、
用科學(xué)記數(shù)法表示絕對(duì)值大于10的n位整數(shù)時(shí),其中10的指數(shù)是
用科學(xué)記數(shù)法表示絕對(duì)值小于1的正小數(shù)時(shí),其中10的指數(shù)是第一個(gè)非0數(shù)字前面0的個(gè)數(shù)(包括小數(shù)點(diǎn)前面的一個(gè)0)
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8
1)分式混合運(yùn)算法則:
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
2)分式方程的增根問題
(1)增根的產(chǎn)生:分式方程本身隱含著分母不為0的條件,當(dāng)把分式方程轉(zhuǎn)化為整式方程后,方程中未知
數(shù)允許取值的范圍擴(kuò)大了,如果轉(zhuǎn)化后的整式方程的根恰好使原方程中分母的值為0,那么就會(huì)出現(xiàn)
不適合原方程的根---增根;
(2)驗(yàn)根:因?yàn)榻夥质椒匠炭赡艹霈F(xiàn)增根,所以解分式方程必須驗(yàn)根.
列分式方程基本步驟
、賹-仔細(xì)審題,找出等量關(guān)系。
②設(shè)-合理設(shè)未知數(shù)。
③列-根據(jù)等量關(guān)系列出方程(組)。
④解-解出方程(組)。注意檢驗(yàn)
、荽-答題。
3)解分式方程的基本步驟
、湃シ帜,把方程兩邊同乘以各分母的最簡(jiǎn)公分母。(產(chǎn)生增根的過程)
⑵解整式方程,得到整式方程的解。
、菣z驗(yàn),把所得的整式方程的解代入最簡(jiǎn)公分母中:
如果最簡(jiǎn)公分母為0,則原方程無解,這個(gè)未知數(shù)的值是原方程的增根;如果最簡(jiǎn)公分母不為0,則是原方程的解。
產(chǎn)生增根的條件是:
、偈堑玫降恼椒匠痰慕;
、诖胱詈(jiǎn)公分母后值為0。
4)分式的基本性質(zhì):
分式的分子和分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變。
即,(C≠0),其中A、B、C均為整式。分式的符號(hào)法則:一個(gè)分式的分子、分母與分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
約分:分?jǐn)?shù)可以約分,分式與分?jǐn)?shù)類似,也可以約分,根據(jù)分式的基本性質(zhì)把一個(gè)分式的分子與分母的公因式約去,這種變形稱為分式的約分。
5)分式的約分步驟:
(1)如果分式的分子和分母都是單項(xiàng)式或者是幾個(gè)因式乘積的形式,將它們的公因式約去;
(2)分式的分子和分母都是多項(xiàng)式,將分子和分母分別分解因式,再將公因式約去。
6)分式的運(yùn)算:
1.分式的加減法法則:
(1)同分母的分式相加減,分母不變,把分子相加;
(2)異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進(jìn)行計(jì)算。
2.分式的乘除法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。
3.分式的混合運(yùn)算順序,先算乘方,再算乘除,最后算加減,有括號(hào)先算括號(hào)里面的。
4.對(duì)于分式化簡(jiǎn)求值的'題型要注意解題格式,要先化簡(jiǎn),再代人字母的值求值。
約分的方法和步驟包括:
(1)當(dāng)分子、分母是單項(xiàng)式時(shí),公因式是相同因式的最低次冪與系數(shù)的公約數(shù)的積;
(2)當(dāng)分子、分母是多項(xiàng)式時(shí),應(yīng)先將多項(xiàng)式分解因式,約去公因式。
7)通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。
分式通分:將幾個(gè)異分母的分式化成同分母的分式,這種變形叫分式的通分。
(1)當(dāng)幾個(gè)分式的分母是單項(xiàng)式時(shí),各分式的最簡(jiǎn)公分母是系數(shù)的最小公倍數(shù)、相同字母的次冪的所有不同字母的積;
(2)如果各分母都是多項(xiàng)式,應(yīng)先把各個(gè)分母按某一字母降冪或升冪排列,再分解因式,找出最簡(jiǎn)公分母;
(3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;
(4)通分和約分是兩種截然不同的變形.約分是針對(duì)一個(gè)分式而言,通分是針對(duì)多個(gè)分式而言;約分是將一個(gè)分式化簡(jiǎn),而通分是將一個(gè)分式化繁。
8)注意:
(1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);
(2)分式的變號(hào)法則:分式的分子、分母和分式本身的符號(hào),改變其中的任何兩個(gè),分式的值不變。
(3)約分時(shí),分子與分母不是乘積形式,不能約分.
3.求最簡(jiǎn)公分母的方法是:
(1)將各個(gè)分母分解因式;
(2)找各分母系數(shù)的最小公倍數(shù);
(3)找出各分母中不同的因式,相同因式中取次數(shù)的,滿足(2)(3)的因式之積即為各分式的最簡(jiǎn)公分母(求最簡(jiǎn)公分母在分式的加減運(yùn)算和解分式方程時(shí)起非常重要的作用)。
運(yùn)算符號(hào)
如加號(hào)(+),減號(hào)(-),乘號(hào)(×或·),除號(hào)(÷或/),兩個(gè)集合的并集(∪),交集(∩),根號(hào)(√ ̄),對(duì)數(shù)(log,lg,ln,lb,lim),比(:),絕對(duì)值符號(hào)| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
基本函數(shù)有哪些
正弦:sine余弦:cosine(簡(jiǎn)寫cos)
正切:tangent(簡(jiǎn)寫tan)
余切:cotangent(簡(jiǎn)寫cot)
正割:secant(簡(jiǎn)寫sec)
余割:cosecant(簡(jiǎn)寫csc)
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9
一、平移
1、定義
在平面內(nèi),將一個(gè)圖形整體沿某方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
2、性質(zhì)
平移前后兩個(gè)圖形是全等圖形,對(duì)應(yīng)點(diǎn)連線平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。
二、旋轉(zhuǎn)
1、定義
在平面內(nèi),將一個(gè)圖形繞某一定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
旋轉(zhuǎn)前后兩個(gè)圖形是全等圖形,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角等于旋轉(zhuǎn)角。
三、四邊形的相關(guān)概念
1、四邊形
在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內(nèi)角和定理及外角和定理
四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n2)180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、設(shè)多邊形的邊數(shù)為n,則多邊形的對(duì)角線共有
n(n3)2條。從n邊形的一個(gè)頂點(diǎn)出
發(fā)能引(n-3)條對(duì)角線,將n邊形分成(n-2)個(gè)三角形。
四、平行四邊形
1、平行四邊形的定義
兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì)
。1)平行四邊形的對(duì)邊平行且相等。
。2)平行四邊形相鄰的角互補(bǔ),對(duì)角相等
(3)平行四邊形的對(duì)角線互相平分。
(4)平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是對(duì)角線的交點(diǎn)。
常用點(diǎn):
。1)若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段的中點(diǎn)是對(duì)角線的交點(diǎn),并且這條直線二等分此平行四邊形的面積。
。2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
。1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形
。2)定理1:兩組對(duì)角分別相等的四邊形是平行四邊形
。3)定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形
。4)定理3:對(duì)角線互相平分的四邊形是平行四邊形
。5)定理4:一組對(duì)邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離。
平行線間的距離處處相等。5、平行四邊形的面積
S平行四邊形=底邊長(zhǎng)×高=ah
五、矩形
1、矩形的定義
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
。1)矩形的對(duì)邊平行且相等
(2)矩形的四個(gè)角都是直角
(3)矩形的對(duì)角線相等且互相平分
。4)矩形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到矩形四個(gè)頂點(diǎn)的距離相等);對(duì)稱軸有兩條,是對(duì)邊中點(diǎn)連線所在的直線。
3、矩形的判定
。1)定義:有一個(gè)角是直角的平行四邊形是矩形
。2)定理1:有三個(gè)角是直角的四邊形是矩形
。3)定理2:對(duì)角線相等的平行四邊形是矩形
4、矩形的面積S矩形=長(zhǎng)×寬=ab
六、菱形
1、菱形的定義
有一組鄰邊相等的平行四邊形叫做菱形
2、菱形的性質(zhì)
。1)菱形的四條邊相等,對(duì)邊平行
。2)菱形的相鄰的角互補(bǔ),對(duì)角相等
(3)菱形的對(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角
(4)菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn)(對(duì)稱中心到菱形四條邊的距離相等);對(duì)稱軸有兩條,是對(duì)角線所在的直線。
3、菱形的判定
。1)定義:有一組鄰邊相等的.平行四邊形是菱形
(2)定理1:四邊都相等的四邊形是菱形
。3)定理2:對(duì)角線互相垂直的平行四邊形是菱形
4、菱形的面積
S菱形=底邊長(zhǎng)×高=兩條對(duì)角線乘積的一半
七.正方形
1、正方形的定義
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
。1)正方形四條邊都相等,對(duì)邊平行
。2)正方形的四個(gè)角都是直角
。3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角
。4)正方形既是中心對(duì)稱圖形又是軸對(duì)稱圖形;對(duì)稱中心是對(duì)角線的交點(diǎn);對(duì)稱軸有四條,是對(duì)角線所在的直線和對(duì)邊中點(diǎn)連線所在的直線。
3、正方形的判定
判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再證它是菱形。先證它是菱形,再證它是矩形。
4、正方形的面積
設(shè)正方形邊長(zhǎng)為a,對(duì)角線長(zhǎng)為bS正方形=a2b22
八、梯形
(一)1、梯形的相關(guān)概念
一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形。
梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長(zhǎng)的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。
2、梯形的判定
。1)定義:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。
。2)一組對(duì)邊平行且不相等的四邊形是梯形。
。ǘ┲苯翘菪蔚亩x:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形
梯形直角梯形特殊梯形
等腰梯形
。ㄈ┑妊菪
1、等腰梯形的定義
兩腰相等的梯形叫做等腰梯形。
2、等腰梯形的性質(zhì)
。1)等腰梯形的兩腰相等,兩底平行。
。2)等腰梯形同一底上的兩個(gè)角相等,同一腰上的兩個(gè)角互補(bǔ)。
。3)等腰梯形的對(duì)角線相等。
(4)等腰梯形是軸對(duì)稱圖形,它只有一條對(duì)稱軸,即兩底的垂直平分線。
3、等腰梯形的判定
。1)定義:兩腰相等的梯形是等腰梯形
。2)定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形
(3)對(duì)角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)
。ㄋ模┨菪蔚拿娣e
。1)如圖,S梯形ABCD12(CDAB)DE
。2)梯形中有關(guān)圖形的面積:
、賁ABDSBAC;
、赟AODSBOC;
、跾ADCSBCD
九、中心對(duì)稱圖形
1、定義
在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。
2、性質(zhì)
。1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。
。2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分。
。3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。
第四章數(shù)量、位置的變化
一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。
3、點(diǎn)的坐標(biāo)的概念
對(duì)于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)ab時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
。1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一象限x0,y0點(diǎn)P(x,y)在第二象限x0,y0點(diǎn)P(x,y)在第三象限x0,y0點(diǎn)P(x,y)在第四象限x0,y0
(2)、坐標(biāo)軸上的點(diǎn)的特征點(diǎn)P(x,y)在x軸上y0,x為任意實(shí)數(shù)點(diǎn)P(x,y)在y軸上x0,y為任意實(shí)數(shù)點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
。3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)
。4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
。5)、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,-y)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(-x,y)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于y
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于x
。3)點(diǎn)P(x,y)到原點(diǎn)的距離等于x2y2
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a圖形的變化被橫向或縱向拉長(zhǎng)(壓縮)為原來的a倍放大(縮小)為原來的a倍關(guān)于y軸或x軸對(duì)稱關(guān)于原點(diǎn)成中心對(duì)稱沿x軸或y軸平移a個(gè)單位沿x軸平移a個(gè)單位,再沿y軸平移a個(gè)單第五章一次函數(shù)
一、函數(shù):
一般地,在某一變化過程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。三、函數(shù)的三種表示法
(1)關(guān)系式(解析)法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
。2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成ykxb(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)ykxb中的b=0時(shí)(即ykx)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(diǎn)(0,0)的直線。
k的符號(hào)b的符號(hào)函數(shù)圖像yb>00xyb0xyb0時(shí),圖像經(jīng)過第一、三象限,y隨x的增大而增大;
。2)當(dāng)k0時(shí),y隨x的增大而增大(2)當(dāng)k(1)平均數(shù):一般地,對(duì)于n個(gè)數(shù)x1,x2,,xn,我們把個(gè)數(shù)的算術(shù)平均數(shù),簡(jiǎn)稱平均數(shù),記為x。
(2)加權(quán)平均數(shù):
1n(x1x2xn)叫做這n
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10
全等三角形知識(shí)點(diǎn)
1.全等圖形:能夠完全重合的兩個(gè)圖形就是全等圖形。
2.全等圖形的性質(zhì):全等多邊形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等。
3.全等三角形:三角形是特殊的多邊形,因此,全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等。同樣,如果兩個(gè)三角形的邊、角分別對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。
說明:
全等三角形對(duì)應(yīng)邊上的高,中線相等,對(duì)應(yīng)角的平分線相等;全等三角形的周長(zhǎng),面積也都相等。
這里要注意:
(1)周長(zhǎng)相等的兩個(gè)三角形,不一定全等;
(2)面積相等的兩個(gè)三角形,也不一定全等。
小練習(xí)
1.下列說法中正確的說法為()
①全等圖形的形狀相同、大小相等;
②全等三角形的對(duì)應(yīng)邊相等;
、廴热切蔚膶(duì)應(yīng)角相等;
④全等三角形的周長(zhǎng)、面積分別相等,A.①②③④B.①③④C.①②④D.②③④
2.一個(gè)正方形的側(cè)面展開圖有()個(gè)全等的正方形.
A.2個(gè)B.3個(gè)C.4個(gè)D.6個(gè)
3.對(duì)于兩個(gè)圖形,給出下列結(jié)論,其中能獲得這兩個(gè)圖形全等的結(jié)論共有()
、賰蓚(gè)圖形的周長(zhǎng)相等;
②兩個(gè)圖形的面積相等;
、蹆蓚(gè)圖形的周長(zhǎng)和面積都相等;
、軆蓚(gè)圖形的形狀相同,大小也相等.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
三角形全等的判定知識(shí)點(diǎn)
1、三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱“SAS”,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(“邊角邊”或“SAS”)。
(2)“角邊角”簡(jiǎn)稱“ASA”,兩個(gè)角和它們的夾邊分別對(duì)應(yīng)相等的兩個(gè)三角形全等(“角邊角”或“ASA”)。
(3)“邊邊邊”簡(jiǎn)稱“SSS”,三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(“邊邊邊”或“SSS”)。
(4)“角角邊”簡(jiǎn)稱“AAS”,有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(“角角邊”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能證明直角三角形全等.
斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(“斜邊、直角邊”或“HL”).
注意:兩邊一對(duì)角(SSA)和三角(AAA)對(duì)應(yīng)相等的兩個(gè)三角形不一定全等。
小練習(xí)
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可補(bǔ)充的條件是______
核心考點(diǎn):全等三角形的判定
2、王師傅在做完門框后,常常在門框上斜釘兩根木條,這樣做的數(shù)學(xué)原理是______
核心考點(diǎn):三角形的穩(wěn)定性
3、將兩根鋼條AA’、BB’的中點(diǎn)O連在一起,使AA’、BB’可以繞著點(diǎn)O自由旋轉(zhuǎn),就做成了一個(gè)測(cè)量工件,則A’B’的長(zhǎng)等于內(nèi)槽寬AB,那么判定△OAB≌△OA’B’的理由是______
核心考點(diǎn):全等三角形的判定
角的平分線的性質(zhì)知識(shí)點(diǎn)
1.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
2.判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上。
3.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系)
、、回顧三角形判定,搞清我們還需要什么
、、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的`問題)
數(shù)學(xué)最常用且非常實(shí)用的學(xué)習(xí)方法
1、預(yù)習(xí)很重要:
往往被忽略,理由:沒時(shí)間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。
2、聽講有學(xué)問:
聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。
3、做好錯(cuò)題本:
每個(gè)會(huì)學(xué)習(xí)的學(xué)生都會(huì)有。最好再加個(gè)“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯(cuò)題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。
4、用好課外書:
正確認(rèn)識(shí)網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對(duì)不是課堂學(xué)習(xí)的替代品。
5、注意總結(jié)和反思:
知識(shí)點(diǎn)、解題方法和技巧、經(jīng)驗(yàn)和教訓(xùn)。
6、接受數(shù)學(xué)思想方法的指導(dǎo):
要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠(yuǎn)。
關(guān)于數(shù)學(xué)常見誤區(qū)有哪些
1、被動(dòng)學(xué)習(xí)
許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。
2、學(xué)不得法
老師上課一般都要講清知識(shí)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒能專心聽課,對(duì)要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。
4、進(jìn)一步學(xué)習(xí)條件不具備
高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等?陀^上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
如何整理數(shù)學(xué)學(xué)科課堂筆記
一、內(nèi)容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
二、疑難問題。將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
三、思路方法。對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
五、錯(cuò)誤反思。學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數(shù)學(xué)常用解題技巧有哪些
第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡(jiǎn)單的題比如說是做到第三題、第四題的時(shí)候不是難題,但想不起來了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會(huì)頓悟,豁然開朗。
第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過程,因此在這個(gè)過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過程,讓誰寫、誰看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過程,這是規(guī)范答題。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
初中怎樣學(xué)好數(shù)學(xué)
學(xué)好初中數(shù)學(xué)培養(yǎng)運(yùn)算能力
初中數(shù)學(xué)涉及到大量的運(yùn)算內(nèi)容,比如有理數(shù)的運(yùn)算、因式分解、根式的運(yùn)算和解方程,這些都是初中數(shù)學(xué)涉及到的知識(shí)內(nèi)容,如果初中生數(shù)學(xué)運(yùn)算能力不過關(guān),那么成績(jī)?cè)趺茨芴岣吣?所以運(yùn)算是學(xué)好初中數(shù)學(xué)的基本功,這個(gè)基本功一定要扎實(shí),不然以后的初中數(shù)學(xué)就可以不用學(xué)習(xí)了。
初中生在解答運(yùn)算題的時(shí)候,不要急躁,靜下心來。初中數(shù)學(xué)運(yùn)算的過程是很重要的,這也是初中生對(duì)于數(shù)學(xué)邏輯和思維的培養(yǎng)過程,結(jié)果要準(zhǔn)確;同時(shí)初中生還有要絕對(duì)的自信,不要求速度可以慢一點(diǎn)的,盡量一次做對(duì)。
學(xué)好初中數(shù)學(xué)做題的數(shù)量不能少
不可否認(rèn),想要學(xué)好初中數(shù)學(xué),就要做一定量的數(shù)學(xué)題。不贊同大量的刷題,那樣沒有什么意義。初中生做數(shù)學(xué)題主要是以基礎(chǔ)題的練習(xí)為主,將初中數(shù)學(xué)的`基礎(chǔ)題弄懂的同時(shí),反復(fù)的做一些比較典型的題,這樣才是初中生正確的學(xué)習(xí)數(shù)學(xué)方式。
在初中階段,學(xué)生要鍛煉自己數(shù)學(xué)的抽象思維能力,最好的結(jié)果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說的熟能生巧。同時(shí)也是初中生數(shù)學(xué)基礎(chǔ)知識(shí)牢固的體現(xiàn)。相反的,有的初中生在做練習(xí)題的時(shí)候,比較盲目和急躁,這樣的結(jié)果就是粗心大意,馬虎出錯(cuò)。
課上重視聽講課下及時(shí)復(fù)習(xí)
初中生數(shù)學(xué)能力的培養(yǎng)一部分在于平時(shí)做題的過程中,另一部分就在課堂上。所以初中生想要學(xué)好數(shù)學(xué),就要重視課內(nèi)的學(xué)習(xí)效率,在課上的時(shí)候要跟緊老師的思路,大膽的推測(cè)老師下一步講課的知識(shí),尤其是基礎(chǔ)知識(shí)的學(xué)習(xí)。在課后初中生還要對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)點(diǎn)及時(shí)復(fù)習(xí)。對(duì)于每個(gè)階段初中數(shù)學(xué)的學(xué)習(xí)要進(jìn)行知識(shí)點(diǎn)歸納和整理。
初中數(shù)學(xué)多項(xiàng)式知識(shí)點(diǎn)
1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。
2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。
3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。
5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。
6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12
第十一章全等三角形
1、全等三角形的性質(zhì):全等三角形對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。
2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對(duì)邊對(duì)應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
3、角平分線的性質(zhì):角平分線平分這個(gè)角,角平分線上的點(diǎn)到角兩邊的距離相等
4、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)。
第十二章軸對(duì)稱
1、如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2、軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
3、角平分線上的點(diǎn)到角兩邊距離相等。
4、線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
5、與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
6、軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
7、畫一圖形關(guān)于某條直線的軸對(duì)稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。
8、點(diǎn)(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(x,—y)
點(diǎn)(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為(—x,y)
點(diǎn)(x,y)關(guān)于原點(diǎn)軸對(duì)稱的點(diǎn)的坐標(biāo)為(—x,—y)
9、等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為“三線合一”。
10、等腰三角形的判定:等角對(duì)等邊。
11、等邊三角形的三個(gè)內(nèi)角相等,等于60°
12、等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形。
有兩個(gè)角是60°的三角形是等邊三角形。
13、直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
14、直角三角形斜邊上的中線等于斜邊的一半
第十三章實(shí)數(shù)
算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。
正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
數(shù)a的相反數(shù)是—a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
第十四章一次函數(shù)
1、畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個(gè)點(diǎn)即可,其他函數(shù)一般需要列出5個(gè)以上的點(diǎn),所列點(diǎn)是自變量與其對(duì)應(yīng)的函數(shù)值),二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個(gè)點(diǎn),一般畫一次函數(shù)只用兩點(diǎn)),三、連線(依次用平滑曲線連接各點(diǎn))。
2、根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。
3、若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
4、正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
5、正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:k="">0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
6、已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):
把兩點(diǎn)帶入函數(shù)一般式列出方程組
求出待定系數(shù)
把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式
7、會(huì)從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)
第十五章整式的乘除與因式分解
1、同底數(shù)冪的乘法
同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):
、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;
、谥笖(shù)是1時(shí),不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對(duì)乘法,只要底數(shù)相同指數(shù)就可以相加;而對(duì)于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
④當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中m、n、p均為正數(shù));
、莨竭可以逆用:(m、n均為正整數(shù))
2、冪的乘方與積的乘方
1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
2、底數(shù)有負(fù)號(hào)時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(—a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。
3、底數(shù)有時(shí)形式不同,但可以化成相同。
4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
5、積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。
6、冪的乘方與積乘方法則均可逆向運(yùn)用。
3、整式的乘法
。1)單項(xiàng)式乘法法則:?jiǎn)雾?xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):
、俜e的系數(shù)等于各因式系數(shù)積,先確定符號(hào),再計(jì)算絕對(duì)值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;
、谙嗤帜赶喑,運(yùn)用同底數(shù)的乘法法則;
、壑辉谝粋(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
④單項(xiàng)式乘法法則對(duì)于三個(gè)以上的'單項(xiàng)式相乘同樣適用;
、輪雾(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。
。2)單項(xiàng)式與多項(xiàng)式相乘
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
、賳雾(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
、谶\(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);
、墼诨旌线\(yùn)算時(shí),要注意運(yùn)算順序。
。3)多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
、俣囗(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;
②多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
③對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得
4、平方差公式
1、平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。
其結(jié)構(gòu)特征是:
、俟阶筮吺莾蓚(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
②公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
5、完全平方公式
1、完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。
即;
口決:首平方,尾平方,2倍乘積在中央;
2、結(jié)構(gòu)特征:
、俟阶筮吺嵌(xiàng)式的完全平方;
、诠接疫吂灿腥(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
3、在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)這樣的錯(cuò)誤。
添括號(hào)法則:添正不變號(hào),添負(fù)各項(xiàng)變號(hào),去括號(hào)法則同樣
6、同底數(shù)冪的除法
1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
2、在應(yīng)用時(shí)需要注意以下幾點(diǎn):
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(—2.0=1),則00無意義。
③任何不等于0的數(shù)的—p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0—1,0—3都是無意義的;當(dāng)a>0時(shí),a—p的值一定是正的;當(dāng)a<0時(shí),a—p的值可能是正也可能是負(fù)的,如
、苓\(yùn)算要注意運(yùn)算順序。
7、整式的除法
1、單項(xiàng)式除法單項(xiàng)式
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
2、多項(xiàng)式除以單項(xiàng)式
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。
8、分解因式
1、把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
2、因式分解與整式乘法是互逆關(guān)系。
因式分解與整式乘法的區(qū)別和聯(lián)系:
。1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;
。2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘。
八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13
一、四邊形性質(zhì)探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點(diǎn)到另一條直線的距離相等,這個(gè)距離稱為平行線之間的距離。
平行四邊形:兩組對(duì)邊分別平行的四邊形,對(duì)邊相等,對(duì)角相等,對(duì)角線互相平分。兩組對(duì)邊分別平行的四邊形是平行四邊形,兩組對(duì)邊分別相等的四邊形是平行四邊形,兩條對(duì)角線互相平分的四邊形是平行四邊形,一組對(duì)邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形(平行四邊形的性質(zhì))。四條邊都相等,兩條對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角。一組鄰邊相等的平行四邊形是菱形,對(duì)角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個(gè)內(nèi)角是直角的平行四邊形(平行四邊形的性質(zhì))。對(duì)角線相等,四個(gè)角都是直角。有一個(gè)內(nèi)角是直角的平行四邊形是矩形,對(duì)角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。一組鄰邊相等的矩形是正方形,一個(gè)內(nèi)角是直角的菱形是正方形。
梯形:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形。一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。
等腰梯形:兩條腰相等的梯形。同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個(gè)內(nèi)角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內(nèi),由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內(nèi)角和等于(n—2)×180
多邊形內(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角。多邊形的外角和都等于360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。
中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。
二、實(shí)數(shù)
定義:任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)
一般地,如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根(也叫二次方根)一個(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根。求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個(gè)數(shù)x的.立方等于a,那么這個(gè)數(shù)x就叫做a的立方根(也叫做三次方根)。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開立方,其中a叫做被開方數(shù)。有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù),即實(shí)數(shù)可以分為有理數(shù)和無理數(shù)。
每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示;反過來,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù)。即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。
在數(shù)軸上,右邊的點(diǎn)表示的數(shù)比左邊的點(diǎn)表示的數(shù)大。
三、全等三角形
(1)形狀、大小相同的圖形能夠完全重合;
。2)全等形:能夠完全重合的兩個(gè)圖形叫做全等形;
。3)全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形;
。4)平移、翻折、旋轉(zhuǎn)前后的圖形全等;
。5)對(duì)應(yīng)頂點(diǎn):全等三角形中相互重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn);
。6)對(duì)應(yīng)角:全等三角形中相互重合的角叫做對(duì)應(yīng)角;
。7)對(duì)應(yīng)邊:全等三角形中相互重合的邊叫做對(duì)應(yīng)邊;
(8)全等表示方法:用“@”表示,讀作“全等于”(注意:記兩個(gè)三角形全等時(shí),把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上)
(9)全等三角形的性質(zhì):
、偃热切蔚膶(duì)應(yīng)邊相等;
②全等三角形的對(duì)應(yīng)角相等。
【八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)07-25
初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)12-12
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-07
八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-16
八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)11-11
八年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)2篇11-11
高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-08