分解因式教學(xué)方案
為了確保事情或工作得以順利進(jìn)行,就需要我們事先制定方案,方案的內(nèi)容和形式都要圍繞著主題來展開,最終達(dá)到預(yù)期的效果和意義。那么方案應(yīng)該怎么制定才合適呢?下面是小編整理的分解因式教學(xué)方案,供大家參考借鑒,希望可以幫助到有需要的朋友。
因式分解是進(jìn)行代數(shù)恒等變形的重要手段之一,它在以后的代數(shù)學(xué)習(xí)中有著重要的應(yīng)用,如:多項(xiàng)式除法的簡便運(yùn)算,分式的運(yùn)算,解方程(組)以及二次函數(shù)的恒等變形等,因此學(xué)好因式分解對于代數(shù)知識的后繼學(xué)習(xí)具有相當(dāng)重要的意義。
本節(jié)是因式分解的第1小節(jié),占一個(gè)課時(shí),它主要讓學(xué)生經(jīng)歷從分解因數(shù)到分解因式的過程,讓學(xué)生體會(huì)數(shù)學(xué)思想——類比思想,讓學(xué)生了解分解因式與整式的乘法運(yùn)算之間的互逆關(guān)系,感受分解因式在解決相關(guān)問題中的作用。
一、學(xué)生知識狀況分析
學(xué)生的技能基礎(chǔ):學(xué)生已經(jīng)熟悉乘法的分配律及其逆運(yùn)算,并且學(xué)習(xí)了整式的乘法運(yùn)算,因此,對于因式分解的引入,學(xué)生不會(huì)感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對于八年級學(xué)生還比較生疏,接受起來還有一定的困難,再者本節(jié)還沒有涉及因式分解的具體方法,所以對于學(xué)生來說,尋求因式分解的方法是一個(gè)難點(diǎn)。
二、教學(xué)任務(wù)分析
基于學(xué)生在小學(xué)已經(jīng)接觸過因數(shù)分解的經(jīng)驗(yàn),但對于因式分解的概念還完全陌生,因此,本課時(shí)在讓學(xué)生重點(diǎn)理解因式分解概念的基礎(chǔ)上,應(yīng)有意識地培養(yǎng)學(xué)生知識遷移的數(shù)學(xué)能力,如:類比思想,逆向運(yùn)算能力等。因此,本課時(shí)的教學(xué)目標(biāo)是:
知識與技能:
。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
數(shù)學(xué)能力:
。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
。2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
情感與態(tài)度:
讓學(xué)生初步感受對立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
三、教學(xué)過程分析
本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):看誰算得快——看誰想得快——看誰算得準(zhǔn)——學(xué)生討論——學(xué)生反思。
第一環(huán)節(jié)看誰算得快
活動(dòng)內(nèi)容:用簡便方法計(jì)算:
。1)=
(2)—2.67×132+25×2.67+7×2.67=
。3)992–1=
活動(dòng)目的:如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉。引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺階。
注意事項(xiàng):學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
第二環(huán)節(jié)看誰想得快
活動(dòng)內(nèi)容:993–99能被哪些數(shù)整除?你是怎么得出來的?
學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?
活動(dòng)目的:引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
注意事項(xiàng):由于有了第一環(huán)節(jié)的鋪墊,學(xué)生對于本環(huán)節(jié)問題的理解則顯得比較輕松,學(xué)生能回答出993–99能被100、99、98整除,有的同學(xué)還回答出能被33、50、200等整除,此時(shí),教師應(yīng)有意識地引導(dǎo),使學(xué)生逐漸明白解決這些問題的關(guān)鍵是——把一個(gè)多項(xiàng)式化為積的形式。
第三環(huán)節(jié)看誰算得準(zhǔn)
活動(dòng)內(nèi)容:
計(jì)算下列式子:
。1)3x(x—1)=;
。2)m(a+b+c)=;
(3)(m+4)(m—4)=;
。4)(y—3)2=;
。5)a(a+1)(a—1)=
根據(jù)上面的算式填空:
。1)ma+mb+mc=;
。2)3x2—3x=;
(3)m2—16=;
(4)a3—a=;
。5)y2—6y+9=
活動(dòng)目的:在第一組的整式乘法的計(jì)算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個(gè)初步的意識,由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
注意事項(xiàng):由于整式的乘法運(yùn)算是學(xué)生在七年級已經(jīng)學(xué)習(xí)過的內(nèi)容,因此,學(xué)生能很快得出第一組式子的結(jié)果,并能很快發(fā)現(xiàn)第一組式子與第二組式子之間的聯(lián)系,從而得出第二組式子的結(jié)果。
第四環(huán)節(jié)學(xué)生討論
活動(dòng)內(nèi)容:
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
。1)a(a+1)(a—1)=a3—a
。2)a3—a=a(a+1)(a—1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
結(jié)論:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解。
辨一辨:下列變形是因式分解嗎?為什么?
(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1
。3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2
活動(dòng)目的:通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
(1)分解因式與整式的乘法是一種互逆關(guān)系;
。2)分解因式的結(jié)果要以積的形式表示;
。3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的多項(xiàng)式的次數(shù);
。4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。
注意事項(xiàng):學(xué)生通過討論,能找出分解因式與整式的乘法的聯(lián)系與區(qū)別,基本清楚了“分解因式與整式的乘法是一種互逆關(guān)系”以及“分解因式的結(jié)果要以積的形式表示”這兩種事實(shí),后兩種事實(shí)是在老師的引導(dǎo)與啟發(fā)下才能完成。
第五環(huán)節(jié)反饋練習(xí)
活動(dòng)內(nèi)容:
1、看誰連得準(zhǔn)
x2—y2.(x+1)2
9—25x2y(x—y)
x2+2x+1(3—5x)(3+5x)
xy—y2(x+y)(x—y)
2、下列哪些變形是因式分解,為什么?
。1)(a+3)(a—3)=a2—9
。2)a2—4=(a+2)(a—2)
。3)a2—b2+1=(a+b)(a—b)+1
。4)2πR+2πr=2π(R+r)
活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。
注意事項(xiàng):從學(xué)生的反饋情況來看,學(xué)生對因式分解意義的理解基本到位。
第六環(huán)節(jié)學(xué)生反思
活動(dòng)內(nèi)容:從今天的.課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
活動(dòng)目的:通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解,對矛盾對立統(tǒng)一的觀點(diǎn)有一個(gè)初步認(rèn)識。
注意事項(xiàng):從學(xué)生的反思來看,學(xué)生掌握了新的知識,提高了逆向思維的能力,對于類比的數(shù)學(xué)思想有了一定的理解,對于矛盾對立統(tǒng)一的哲學(xué)觀點(diǎn)也有了一個(gè)初步認(rèn)識。
鞏固練習(xí):課本第45頁習(xí)題2.1第1,2,3題
思考題:課本第45頁習(xí)題2.1第4題(給學(xué)有余力的同學(xué)做)
四、教學(xué)反思
傳統(tǒng)教學(xué)中,總是先介紹因式分解的定義,然后通過大量的模仿練習(xí)來強(qiáng)化鞏固學(xué)生對因式分解概念的記憶與理解,其本質(zhì)上是對因式分解的概念進(jìn)行強(qiáng)化記憶。
在新課程的教學(xué)中,對因式分解的記憶退到了次要的位置,它把因式分解作為培養(yǎng)學(xué)生逆向思維、全面思考、靈活解決矛盾的載體。在教師的指導(dǎo)下,學(xué)生通過因數(shù)分解類比出因式分解,對學(xué)生進(jìn)行類比的數(shù)學(xué)思想培養(yǎng),由整式的乘法與因式分解的對比,對學(xué)生的逆向思維能力進(jìn)行培養(yǎng),也使得學(xué)生對于因式分解概念的引入不至于茫然。
盡管新舊兩種教法的對比上,新課程的教學(xué)不一定馬上顯露出強(qiáng)勁的優(yōu)勢,甚至可能因?yàn)閺?qiáng)化練習(xí)較少,在短時(shí)間內(nèi),學(xué)生的成績比不上傳統(tǒng)教法的學(xué)生成績,但從長遠(yuǎn)目標(biāo)看來,這種對數(shù)學(xué)本質(zhì)的訓(xùn)練會(huì)有效地提高學(xué)生的數(shù)學(xué)素養(yǎng),培養(yǎng)出學(xué)生對數(shù)學(xué)本質(zhì)的理解,而不僅僅是停留在對數(shù)學(xué)的機(jī)械模仿記憶的層面上。
總之,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)的情感態(tài)度與價(jià)值觀上發(fā)生深刻的變化。
【分解因式教學(xué)方案】相關(guān)文章:
分解因式的教學(xué)反思06-13
因式分解和分解因式的區(qū)別09-26
《因式分解》教學(xué)反思06-14
因式分解教學(xué)反思06-10
因式分解教學(xué)反思01-04
《提取公因式進(jìn)行因式分解》教學(xué)反思06-29
人教版因式分解教學(xué)課件03-18