數(shù)學(xué)模型思想在小學(xué)數(shù)學(xué)教學(xué)中的滲透論文
【摘要】現(xiàn)實生活中需要用到的數(shù)學(xué)概念及運算法則,通過抽象推理得到的數(shù)學(xué)發(fā)展,再通過模型實現(xiàn)數(shù)學(xué)與外部世界的聯(lián)系即數(shù)學(xué)模型。小學(xué)數(shù)學(xué)課堂教學(xué)中,老師要有意識的融入數(shù)學(xué)模型思想,以促使學(xué)生更好的體會、理解數(shù)學(xué)與外部世界的聯(lián)系,激發(fā)其學(xué)習(xí)興趣,掌握學(xué)習(xí)數(shù)學(xué)的基本方法,從而提高小學(xué)數(shù)學(xué)教學(xué)的有效性。
【關(guān)鍵詞】數(shù)學(xué)模型思想小學(xué)數(shù)學(xué)課堂教學(xué)
數(shù)學(xué)模型是一種特殊的數(shù)學(xué)結(jié)構(gòu),有效利用數(shù)學(xué)模型可以將抽象的數(shù)學(xué)內(nèi)容具象化處理,以提高數(shù)學(xué)解決現(xiàn)實問題的實用性;并且合理應(yīng)用數(shù)學(xué)模型可以幫助學(xué)生更加準(zhǔn)確的理解教學(xué)內(nèi)容,提高學(xué)習(xí)效率。由此可見,在小學(xué)數(shù)學(xué)教學(xué)中融入數(shù)學(xué)模型思想具有重要的現(xiàn)實意義。
一、小學(xué)數(shù)學(xué)中的數(shù)學(xué)模型
廣義上講,所有的數(shù)學(xué)概念、數(shù)學(xué)理論體系、數(shù)學(xué)公式、數(shù)學(xué)方程及相關(guān)的算法系統(tǒng)等均屬于數(shù)學(xué)模型的范疇;狹義上講,數(shù)學(xué)模型是反映特定問題或特定具體事物系統(tǒng)的數(shù)學(xué)關(guān)系結(jié)構(gòu)。本文所研究的小學(xué)數(shù)學(xué)教學(xué)中的數(shù)學(xué)模型是基于狹義的角度而言,即應(yīng)用數(shù)學(xué)符號建立起的代數(shù)式、關(guān)系式、方程、函數(shù)、不等式、圖表、圖形等,而小學(xué)階段的數(shù)學(xué)模型以公式模型、方程模型、集合模型及函數(shù)模型為主。其中數(shù)學(xué)公式是從現(xiàn)實世界中抽象出來的數(shù)學(xué)模型,其不包含事物的個別屬性,其所反映的是客觀世界數(shù)量關(guān)系的符號,其典型意義也更加突出,比如總價=單價×數(shù)量、長方形的面積公式、周長公式等等均屬于公式模型。方程模型應(yīng)用合理可降低應(yīng)用題的答題難度,解答應(yīng)用題時可以先將問題歸結(jié)為可以確定的若干未知量,設(shè)想未知量已求出,根據(jù)條件列出已知量與未知量之間成立的一切關(guān)系式,再從已知條件中分析出部分條件,同一個量用兩種不同的方式表達出來,得出一個與未知量相關(guān)的方程式或方程組,通過解答方程式或方程組獲得應(yīng)用題的答案,并驗證其正確性。集合模型可簡化問題背影,幫助學(xué)生用更簡單的方法解決實際問題。小學(xué)階段的函數(shù)模型主要為正比例及反比例的問題,其中正比例為一次函數(shù),反比例為反比例函數(shù)的初級形式,小學(xué)階段學(xué)習(xí)正比例、反比例的知識可以使學(xué)生體會變是思想,在其后續(xù)的教學(xué)中滲透函數(shù)模型思想。
二、小學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)模型思想的滲透策略
數(shù)學(xué)模型思想可以促使學(xué)生提高對數(shù)學(xué)知識的理解與記憶,從而提高學(xué)習(xí)效率。在實際小學(xué)數(shù)學(xué)課堂教學(xué)中,可以從以下幾個方面滲透數(shù)學(xué)模型思想:
。ㄒ唬┖喕尘,構(gòu)建數(shù)學(xué)模型
數(shù)學(xué)建模是一個“數(shù)學(xué)化”的過程,需要進行逐步抽象、逐步簡化,因此教學(xué)過程中老師可以有意識的采用變式的.方法不斷變化數(shù)學(xué)問題的背景或非本質(zhì)屬性,并構(gòu)建數(shù)學(xué)模型,突出數(shù)學(xué)問題的本質(zhì)。比如在學(xué)習(xí)“分?jǐn)?shù)”的相關(guān)知識時,對于一個小學(xué)三年級的學(xué)生而言,充分理解“把一些物體看成一個整體平均分布若干份,其中的一份或幾份也可以用幾分之一或幾分之幾來表示”這一抽象概念有一定的難度,針對這種情況,就可以采用簡化“分?jǐn)?shù)”這一知識背景的方法構(gòu)建數(shù)學(xué)模型。教師在課堂上向?qū)W生展示一盤桃子,向?qū)W生提出問題:第一次,盤子里只有1只桃子,平均分給4個學(xué)生,需要將這盤桃子分成幾份?每個學(xué)生可以分得幾份?每個學(xué)生分得這盤桃子的幾分之幾?注意整個過程中教師都不斷強調(diào)“盤”這一量詞。學(xué)生順利的回答出“每個學(xué)生可分得這盤桃子的1/4”。接著教師又展示一盤桃子:現(xiàn)在這個盤子里有4個桃子,現(xiàn)在把這盤桃子平均分成4份,分給4個學(xué)生,那么每個學(xué)生可以分得幾份?每個人分到這盤桃子的幾分之幾?由于教師不斷強調(diào)“一盤”為一個整體,學(xué)生很容易就答出來“一盤”桃子可以分成4份,分給4個學(xué)生每個學(xué)生可分得這盤桃子1/4。依此類推,教師先后向?qū)W生又展示了2盤桃子,盤子中桃子的數(shù)量均為4的倍數(shù),屢次重復(fù)、變化,學(xué)生逐漸發(fā)現(xiàn)一個規(guī)律,即無論盤子里有幾顆桃,只要平均分成4份,都是這盤桃子的1/4。這種教學(xué)操作逐漸簡化了具體的教學(xué)實例,將其進行抽象化處理,應(yīng)用數(shù)學(xué)模型的方法幫助學(xué)生進行理解,使學(xué)生對分?jǐn)?shù)意義的本質(zhì)有更加深刻的認知。
。ǘ┮龑(dǎo)學(xué)生參與建模過程
新課程改革強調(diào)學(xué)生的主體參與性,突出學(xué)生的主體性,以強化素質(zhì)教育的教學(xué)目標(biāo)。由此可見,在小學(xué)數(shù)學(xué)教學(xué)中學(xué)生的主體參與性會對老師的教學(xué)效果產(chǎn)生決定性影響,因為學(xué)生主動習(xí)得的知識會更加深刻,而被迫灌輸?shù)闹R則多是暫時性的,因此老師要有意識的調(diào)動學(xué)生的主體參與性,在數(shù)學(xué)建模過程中老師要引導(dǎo)學(xué)生直接參與進來。比如在學(xué)習(xí)數(shù)學(xué)軸的相關(guān)內(nèi)容時老師就可以引導(dǎo)學(xué)生建立數(shù)軸模型:課堂上可拿出直尺觀察,直尺就是一個直觀的數(shù)軸;再比如上述分?jǐn)?shù)的學(xué)習(xí)過程,老師提問、學(xué)生回答的過程也是學(xué)生主動參與建模的過程。
(三)運用聯(lián)想教學(xué)提高學(xué)生思維的跳躍性
小學(xué)數(shù)學(xué)課堂教學(xué)中要改變傳統(tǒng)機械模仿、生搬硬套的教學(xué)方法,運用聯(lián)想教學(xué)引導(dǎo)學(xué)生從復(fù)雜的數(shù)學(xué)問題中尋找知識規(guī)律,從本質(zhì)上對各個數(shù)學(xué)知識點的相同及相似之處,以完成模型構(gòu)建。比如在教學(xué)過程中學(xué)習(xí)“比”的概念,直接告知概念比較簡單,但是學(xué)生需要死記硬背才能掌握概念,且不一定能深入理解,而建立比的數(shù)學(xué)模型卻可以大大提高教學(xué)效果。生活中很多事物的屬性均可以比較,比如物體的大小、質(zhì)量、長短、高矮等均可以用一個量面積單位、質(zhì)量單位、長度單位進行比較,但還有些事物無法直接比較,比如誰跑的更快,就需要抽象的時間來比較。比如45千米的距離騎車3小時,蘋果2千克一共9元,二者均可以用比的形式表達出來。學(xué)生完成題目后會發(fā)現(xiàn):不僅同類的量可以用“比”的形式表達出來,不同類的量也可以用“比”的形式表達。這種結(jié)構(gòu)鏈接利用知識間的聯(lián)系,使學(xué)生更好的理解“比”的概念。
三、結(jié)語
總之,在小學(xué)數(shù)學(xué)教學(xué)中融入數(shù)學(xué)模型思想可加強促進學(xué)生對抽象數(shù)學(xué)知識點的理解,引導(dǎo)學(xué)生基于多角度、多維度解決問題。當(dāng)然,根據(jù)教師的教學(xué)實踐可知,在小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)模型思想的方法是多種多樣的,無論是簡化背景、引導(dǎo)學(xué)生的主動參與,還是運用聯(lián)想教學(xué),都要結(jié)合實際教學(xué)情況,才能保證教學(xué)的有效性。
參考文獻:
[1]屈淑靜.如何提高小學(xué)數(shù)學(xué)教學(xué)的有效性[J].新課程研究(基礎(chǔ)教育).2016(02)
[2]李愛云.實現(xiàn)小學(xué)數(shù)學(xué)教學(xué)生活化的策略[J].學(xué)周刊.2011(09).
[3]王俊果.小學(xué)數(shù)學(xué)教學(xué)要努力培養(yǎng)學(xué)生的創(chuàng)新意識[J].教育實踐與研究.2016(03)
[4]肖光濤.小學(xué)數(shù)學(xué)教學(xué)中如何培養(yǎng)學(xué)生創(chuàng)新能力[J].四川教育學(xué)院學(xué)報.2016(10)
[5]劉大軍.小學(xué)數(shù)學(xué)課堂教學(xué)有效性思考[J].新課程研究(基礎(chǔ)教育).2016(03)
【數(shù)學(xué)模型思想在小學(xué)數(shù)學(xué)教學(xué)中的滲透論文】相關(guān)文章:
轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)教學(xué)中的滲透論文(通用5篇)05-20
數(shù)形結(jié)合思想在初中數(shù)學(xué)教學(xué)中的滲透研究論文10-09
極限思想在數(shù)學(xué)課堂中的滲透論文10-10
小學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)思想的滲透途徑論文06-28
小學(xué)體育教學(xué)中的德育滲透的論文06-27
德育在小學(xué)體育教學(xué)中的滲透論文01-22