1. <rp id="zsypk"></rp>

      2. 應(yīng)用題的解題技巧

        時(shí)間:2021-06-12 20:13:44 試題 我要投稿

        應(yīng)用題的解題技巧

          應(yīng)用題的解題技巧有哪些?學(xué)好數(shù)學(xué)的關(guān)鍵就在于要適時(shí)適量地進(jìn)行總結(jié)歸類,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。

          1.圖解分析法這實(shí)際是一種模擬法,具有很強(qiáng)的直觀性和針對(duì)性,數(shù)學(xué)教學(xué)中運(yùn)用得非常普遍。如工程問題、速度問題、調(diào)配問題等,多采用畫圖進(jìn)行分析,通過圖解,幫助學(xué)生理解題意,從而根據(jù)題目?jī)?nèi)容,設(shè)出未知數(shù),列出方程解之。(例略)

          2.親身體驗(yàn)法如講逆水行船與順?biāo)写瑔栴}。有很多學(xué)生都沒有坐過船,對(duì)順?biāo)写、逆水行船、水流的速度,學(xué)生難以弄清。為了讓學(xué)生明白,我舉騎自行車為例(因?yàn)榇蠖鄶?shù)學(xué)生會(huì)騎自行車),學(xué)生有親身體驗(yàn),順風(fēng)騎車覺得很輕松,逆風(fēng)騎車覺得很困難,這是風(fēng)速的影響。并同時(shí)講清,行船與騎車是一回事,所產(chǎn)生影響的不同因素一個(gè)是水流速,一個(gè)是風(fēng)速。這樣講,學(xué)生就好理解。

          同時(shí)講清:順?biāo)写乃俣,等于船在靜水中的速度加上水流的速度;逆水行船的速度,等于船在靜水中的速度減去水流的速度。

          3.直觀分析法如濃度問題,首先要講清百分濃度的含義,同時(shí)講清百分濃度的`計(jì)算方法。

          其次重要的是上課前要準(zhǔn)備幾個(gè)杯子,稱好一定重量的水,和好幾小包鹽進(jìn)教室,以便講例題用。

          如:一杯含鹽15%的鹽水200克,要使鹽水含鹽20%,應(yīng)加鹽多少呢?

          分析這個(gè)例題時(shí),教師先當(dāng)著學(xué)生的面配制15%的鹽水200克(學(xué)生知道其中有鹽30克),現(xiàn)要將15%的鹽水200克配制成20%的鹽水,老師要加入鹽,但不知加入多少重量的鹽,只知道鹽的重量發(fā)生了變化。這樣,就可以根據(jù)鹽的重量變化列方程。含鹽20%的鹽水中,含鹽的總重量減去原200克含鹽15%的總重量,就等于后加的鹽重量。

          即設(shè)應(yīng)加鹽為x克,則(200+x)20%-20015%=x

          解此方程,便得后加鹽的重量。

          附:高考數(shù)學(xué)導(dǎo)數(shù)應(yīng)用題型解題技巧總結(jié)

          導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對(duì)于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:

          1. 導(dǎo)數(shù)的常規(guī)問題:

          (1)刻畫函數(shù)(比初等方法精確細(xì)微);

          (2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);

          (3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于 次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。

          2. 關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。

          3. 導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個(gè)方向,應(yīng)引起注意。

          知識(shí)整合

          1. 導(dǎo)數(shù)概念的理解。

          2. 利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。

          復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對(duì)法則進(jìn)行了證明。

          3. 要能正確求導(dǎo),必須做到以下兩點(diǎn):

          (1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。

          (2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。

        【應(yīng)用題的解題技巧】相關(guān)文章:

        分?jǐn)?shù)應(yīng)用題的解題技巧06-22

        一般應(yīng)用題解題技巧07-26

        初一數(shù)學(xué)應(yīng)用題解題技巧12-16

        初一年級(jí)數(shù)學(xué)應(yīng)用題的解題技巧10-27

        初一年級(jí)數(shù)學(xué)應(yīng)用題解題技巧11-07

        連除應(yīng)用題02-14

        應(yīng)用題的答案05-14

        比的應(yīng)用題練習(xí)06-20

        配對(duì)題的解題技巧02-23

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>