(熱門)小學(xué)數(shù)學(xué)知識點總結(jié)13篇
總結(jié)是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓(xùn)和一些規(guī)律性認識的一種書面材料,它是增長才干的一種好辦法,不如我們來制定一份總結(jié)吧。總結(jié)一般是怎么寫的呢?下面是小編幫大家整理的小學(xué)數(shù)學(xué)知識點總結(jié),僅供參考,歡迎大家閱讀。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇1
1.整數(shù)加法
(1)把兩個數(shù)合并成一個數(shù)的運算叫做加法。
。2)加數(shù)+加數(shù)=和,一個加數(shù)=和-另一個加數(shù)。
2.整數(shù)減法
。1)已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。
(2)被減數(shù)-減數(shù)=差、減數(shù)+差=被減數(shù)、被減數(shù)-差=減數(shù)。
。3)加法和減法互為逆運算。
3.整數(shù)乘法
。1)求幾個相同加數(shù)的和的簡便運算叫做乘法。
。2)在乘法里,0和任何數(shù)相乘都得0。
。3)1和任何數(shù)相乘都的任何數(shù)。
。4)一個因數(shù)×一個因數(shù)=積;一個因數(shù)=積÷另一個因數(shù)。
4.整數(shù)除法
。1)已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。
(2)在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。
。3)乘法和除法互為逆運算。
(4)在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。
。5)被除數(shù)÷除數(shù)=商,除數(shù)=被除數(shù)÷商被除數(shù)=商×除數(shù)。
5.整數(shù)加法計算法則
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。
6.整數(shù)乘法計算法則
先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的.數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。
7.整數(shù)除法計算法則
先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇2
培養(yǎng)下面兩個好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
一、認真完成家庭作業(yè)的習(xí)慣
根據(jù)德國心理學(xué)家艾賓浩斯“遺忘曲線”的原理,人有在學(xué)習(xí)新知識后及時練習(xí)便不容易忘掉,如果不及時練習(xí),就很容易遺忘的記憶規(guī)律。因此,鞏固當(dāng)天所學(xué),認真完成家庭作業(yè)很有必要。對于這點,我要求學(xué)生作到:做作業(yè)前,先看課本回顧一下當(dāng)天所學(xué)的知識,然后再做作業(yè),還要做到“三到一檢查一簽字”!叭健保貉鄣健⑿牡、手到,眼睛看清題目,心里想著計算,手要把答案寫得正確、美觀;
“一檢查一簽字”:做完作業(yè)后,仔細檢查有沒有出錯,有錯要及時訂正,最后再讓家長簽字。老師及時批改后的錯題,記錄在《錯題集》上,并在作業(yè)本上訂正。
二、快速、正確口算的習(xí)慣
數(shù)學(xué)上低年級的口算是今后計算的基礎(chǔ),要養(yǎng)成快速、正確口算的習(xí)慣,還要在掌握一定的口算方法的基礎(chǔ)上多練習(xí)。二年級上期重點練習(xí)100以內(nèi)的'加、減法和表內(nèi)乘法以及乘加、乘減的計算,100以內(nèi)的加減法難點的是進位加法和退位減法,這需要老師在具體的計算方法上進行分類指導(dǎo),而表內(nèi)乘法以及乘加、乘減的計算就需要學(xué)生熟記乘法口訣,教學(xué)時,老師要引導(dǎo)學(xué)生采用有效的具體的記憶方法有針對性地多記、多練、熟記。課上課下也可以用牌游戲的形式練習(xí)連加、連減或乘法,經(jīng)常練習(xí),熟能生巧,口算速度自然就提高了。
也可以借助一些電腦軟件或者app,程序自動出題,自動批改,孩子們還可以PK口算成績,充分調(diào)動了孩子們的學(xué)習(xí)積極性。
養(yǎng)成好習(xí)慣,關(guān)鍵在頭三天,決定在一個月。要想使好習(xí)慣持之以恒,剛開學(xué)的一個月很關(guān)鍵。作為二年級的數(shù)學(xué)老師,開學(xué)后我要時時處處提醒自己以身作則,改掉以往易沖動、處理問題簡單、粗暴的壞毛病,時時處處提醒自己按上面的養(yǎng)成教育的要點去悉心培養(yǎng)學(xué)生的好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
因為二年級學(xué)生的年齡關(guān)系,有時習(xí)慣容易反復(fù),所以還要和家長多溝通,教給家長具體的家庭培養(yǎng)方法,讓家長配合老師共同抓,反復(fù)抓,抓反復(fù),才能使習(xí)慣成自然。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇3
這單元主要是考口算題。有以下幾種形式:
1、用7、8、9的乘法口訣求商
求商方法:想“除數(shù)×( )=被除數(shù)”,再根據(jù)乘法口訣計算得商。
例.直接口算:28÷4 8÷8
2、解決問題
求一個數(shù)里有幾個幾,和把一個數(shù)平均分成幾份,求每份是多少,都用除法計算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );還表示( )里有( )個( );
第五單元混合運算
一、混合計算
混合運算,先乘除,后加減,有括號的要先算括號里面的。
只有加、減法或只有乘、除法,都要從左到右按順序計算。
二、解決兩步計算的實際問題
1、想好先解決什么問題,再解決什么問題。
2、可以畫圖幫助分析。
3、可以分布計算,也可以列綜合算式。
請畫出先算哪一步,再算哪一步(并標(biāo)上1和2)
1、同級運算的類型:
例:23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同級運算的類型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、帶小括號運算的類型:方法:算式里有括號的,要先算括號里面的。
例:6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把兩個算式合并成一個綜合算式。(重點)。
弄清楚哪個數(shù)是前一步算式的結(jié)果,就用前一步算式替換掉那個數(shù),其他的照寫。當(dāng)需要替換的是第二個數(shù),必要時還需要加上小括號。
例:15+9=24 24÷3=8 (強調(diào)括號不能忘)_____________________________
5、解決需要兩步計算解決的問題。(要想好先算出什么,在解答什么)
例:媽媽買回3捆鉛筆,每捆8支,送給妹妹12支后,還剩多少支?
先算____________________再算____________________
例:學(xué)校買來80本科技書,分給六年級35本,剩下的分給其它5個年級,平均每個年級分到多少本?
6、練習(xí)十三第4題(重點)
1、我們一共要烤90個面包,每次能烤9個,已經(jīng)烤了36個,剩下的還要烤幾次?
2、我們家原來有25只兔子,又買了15只,一共有8個籠子,平均每個籠子放幾只?
3.小明有4套明信卡,每套8張,他把其中的5張送給了好朋友,還剩下幾張?
4.工人叔叔要挖總長60米的水溝,已經(jīng)挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六單元有余數(shù)的除法
有余數(shù)的除法
1、有余數(shù)的除法的意義:在平均分一些物體時,有時會有剩余。
2、余數(shù)與除數(shù)的關(guān)系:在有余數(shù)的除法中,余數(shù)必須比除數(shù)小。
最大的余數(shù)小于除數(shù)1,最小的余數(shù)是1。
3、筆算除法的計算方法:
(1)先寫除號“廠”
(2)被除數(shù)寫在除號里,除數(shù)寫在除號的左側(cè)。
(3)試商,商寫在被除數(shù)上面,并要對著被除數(shù)的個位。
(4)把商與除數(shù)的乘積寫在被除數(shù)的下面,相同數(shù)位要對齊。
(5)用被除數(shù)減去商與除數(shù)的乘積,如果沒有剩余,就表示能除盡。
4、有余數(shù)的除法的計算方法可以分四步進行:一商,二乘,三減,四比。
(1)商:即試商,想除數(shù)和幾相乘最接近被除數(shù)且小于被除數(shù),那么商就是幾,寫在被除數(shù)的個位的上面。
(2)乘:把除數(shù)和商相乘,將得數(shù)寫在被除數(shù)下面。
(3)減:用被除數(shù)減去商與除數(shù)的乘積,所得的差寫在橫線的下面。
(4)比:將余數(shù)與除數(shù)比一比,余數(shù)必須必除數(shù)小。
5、解決問題
根據(jù)除法的意義,解決簡單的有余數(shù)的'除法的問題,要根據(jù)實際情況,靈活處理余數(shù)。
(1)余數(shù)比除數(shù)小。
例:43÷7=()…( )余數(shù)可能是( )或者余數(shù)最大是( )
(2)至少問題(進一法):商+1
例:有27箱菠蘿,王叔叔每次最多能運8箱。至少要運多少次才能運完這些菠蘿。
(3)最多問題(去尾法)
例:小麗有10元錢,買3元一個的面包,最多能買幾個?
課例:
1、 22個學(xué)生去劃船,每條船最多坐4人,他們至少要租多少條船?
22÷4=5(條)……2(人)
答:他們至少要租6條船。
第七單元萬以內(nèi)數(shù)的認識
一、1000以內(nèi)數(shù)的認識
1、10個一百就是一千。
2、讀數(shù)時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀“零”,末尾不管有幾個0,都不讀。例如:20xx讀作二千零三,2300讀作二千三百:
3、寫數(shù)時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數(shù)也沒有就寫0占位。例如:三千五百寫作3500,三千零六十九寫作3069:
4、數(shù)的組成:看每個數(shù)位上是幾,就由幾個這樣的計數(shù)單位組成。例:2369由( )個千、( )個百、( )個十和( )個一組成的。
二、10000以內(nèi)數(shù)的認識
1、10個一千是一萬。
2、萬以內(nèi)數(shù)的讀法和寫法與1000以內(nèi)的數(shù)讀法和寫法相同。
3、最小兩位數(shù)是10,最大的兩位數(shù)是99;最小三位數(shù)是100,最大的三位數(shù)是999;最小四位數(shù)是1000,最大的四位數(shù)是9999;最小的五位數(shù)是10000,最大的五位數(shù)是99999。
三、整百、整千數(shù)加減法
1、整百、整千加減法的計算方法。
(1)把整百、整千數(shù)看成幾個百,幾個千,然后相加減。
(2)先把0前面的數(shù)相加減,再在得數(shù)末尾添上與整百、整千數(shù)相同個數(shù)的0。
2、估算
把數(shù)看做它的近似數(shù)再計算。
四、10000以內(nèi)數(shù)的大小比較的方法:
(1)位數(shù)多的數(shù)就大,例如453 ; 1000
(2)如果位數(shù)相同,就比較最高位上的數(shù)字,數(shù)字大的這個數(shù)就大,反之就小;例如357 ; 978
(3)如果最高位上的數(shù)字相同,就比較下一位上的數(shù),依次類推。246 > 219
補充:
1、相鄰兩個計數(shù)單位之間的進率是10。記:一個一個地數(shù),10個一是( )。一十一十地數(shù),10個十是( )。一百一百地數(shù),10個一百是( )。一千一千地數(shù),10個一千是( )。
2、在數(shù)位順序表中,從右邊起,第一位是(個位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(萬位)。
3、數(shù)的組成:就是看每個數(shù)位上是幾,就有幾個這樣的計數(shù)單位組成。
例:2647=( )+( )+( )+( )
4、用估算策略解決問題。
96頁例13(估大)
練習(xí)19第8題(估小)
第八單元克、千克
1、(千克)和(克)都是國際上通用的質(zhì)量單位。計量比較重的物品,常用“千克”(kg)作單位。
2、稱較輕的物品的質(zhì)量時,用“克”作單位;稱較重的物品的質(zhì)量時,用“千克”作單位。
3、一個兩分的硬幣約是1克。兩袋500克的鹽約是1千克。
4、1千克=1000克1kg=1000g.進率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10兩、1兩=50克)
5、計算或者比較大小時,如果單位不同,就需要把單位統(tǒng)一。一般統(tǒng)一成單位“克”。
估計物品有多重,要結(jié)合物品的大小、質(zhì)地等因素。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇4
一、學(xué)習(xí)目標(biāo):
使學(xué)生能在方格紙上用數(shù)對確定位置;
使學(xué)生理解分數(shù)乘法的意義,掌握分數(shù)乘法的計算法則,并能熟練地進行計算;
使學(xué)生理解倒數(shù)的意義,掌握求倒數(shù)的方法;
理解并掌握分數(shù)除法的計算方法,會進行分數(shù)除法計算;
理解比的意義,知道比與分數(shù)、除法的關(guān)系,并能類推出比的基本性質(zhì)。能夠正確地化簡比和求比值;
使學(xué)生認識圓,掌握圓的特征;理解直徑與半徑的相互關(guān)系;理解圓周率的意義,掌握圓周率的近似值。
使學(xué)生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。
二、學(xué)習(xí)難點:
能用數(shù)對表示物體的位置,正確區(qū)分列和行的順序;
使學(xué)生理解分數(shù)乘整數(shù)的意義,掌握分數(shù)乘整數(shù)的計算方法;
掌握求倒數(shù)的方法;
圓的周長和圓周率的意義,圓周長公式的推導(dǎo)過程;
百分數(shù)的意義,求一個數(shù)是另一個數(shù)的百分之幾的應(yīng)用題;
理解圓周率“π”;圓面積計算公式的推導(dǎo)以及畫具有定半徑或直徑的圓;
理解比的意義。
三、知識點概念總結(jié):
分數(shù)乘法:分數(shù)的分子與分子相乘,分母與分母相乘,能約分的要先約分。
分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
分數(shù)乘法意義:分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
分數(shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸
倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
分數(shù)的倒數(shù):找一個分數(shù)的倒數(shù),例如3/4,把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子,則是4/3,3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。
整數(shù)的倒數(shù):找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。
小數(shù)的倒數(shù):
普通算法:找一個小數(shù)的倒數(shù),例如,把化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1
用1計算法:也可以用1去除以這個數(shù),例如,等于4,所以的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。
分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。
分數(shù)除法計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。
分數(shù)除法應(yīng)用題:先找單位單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。
比和比例:比和比例一直是學(xué)數(shù)學(xué)容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。
所以,比和比例的聯(lián)系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個。
比的基本性質(zhì):比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。比的性質(zhì)用于化簡比。
比表示兩個數(shù)相除;只有兩個項:比的前項和后項。
比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。
比例的性質(zhì):在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積。比例的性質(zhì)用于解比例。
比和比例的區(qū)別:
(1)意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。a:b=3:4這是比例。
(2)比的基本性質(zhì)和比例的基本性質(zhì)意義不同、應(yīng)用不同。比的性質(zhì):比的前項和后項都乘或除以一個不為零的數(shù)。比值不變。比例的性質(zhì):在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積相等。比例的性質(zhì)用于解比例。聯(lián)系:比例是由兩個相等的.比組成。
比和比例的意義:
比的意義是兩個數(shù)的除又叫做兩個數(shù)的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義而另一種形式,分數(shù)有括號的含義!
比和比例的聯(lián)系:
比和比例有著密切聯(lián)系。比是研究兩個量之間的關(guān)系,所以它有兩項;比例是研究相關(guān)聯(lián)的兩種量中兩組相對應(yīng)數(shù)的關(guān)系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發(fā)展,如果把比例式中右邊的比看成一個數(shù),比和比例此時又可以統(tǒng)一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。
圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示
直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一。d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr2;用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
周長計算公式:
(1)已知直徑:C=πd
(2)已知半徑:C=2πr
(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)
面積計算公式:
(1)已知半徑:S=πr2
(2)已知直徑:S=π(d/2)2
(3)已知周長:S=π[c÷(2π)]2
百分數(shù)與分數(shù)的區(qū)別:
(1)意義不同。百分數(shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)!彼荒鼙硎緝蓴(shù)之間的倍數(shù)關(guān)系,不能表示某一具體數(shù)量。因此,百分數(shù)后面不能帶單位名稱。分數(shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分數(shù)還可以表示兩數(shù)之間的倍數(shù)關(guān)系.
(2)應(yīng)用范圍不同。百分數(shù)在生產(chǎn)、工作和生活中,常用于調(diào)查、統(tǒng)計、分析與比較。而分數(shù)常常是在測量、計算中,得不到整數(shù)結(jié)果時使用。
(3)書寫形式不同。百分數(shù)通常不寫成分數(shù)形式,而采用百分號“%”來表示。因此,不論百分數(shù)的分子、分母之間有多少個公約數(shù),都不約分;百分數(shù)的分子可以是自然數(shù),也可以是小數(shù)。
而分數(shù)的分子只能是自然數(shù),它的表示形式有:真分數(shù)、假分數(shù)、帶分數(shù),計算結(jié)果不是最簡分數(shù)的一般要通過約分化成最簡分數(shù),是假分數(shù)的要化成帶分數(shù)。任何一個百分數(shù)都可以寫成分母是100的分數(shù),而分母是100的分數(shù)并不都具有百分數(shù)的意義.
(4)百分數(shù)不能帶單位名稱;當(dāng)分數(shù)表示具體數(shù)時可帶單位名稱。
百分數(shù)應(yīng)用:
百分數(shù)一般有三種情況:100%以上,如:增長率、增產(chǎn)率等。100%以下,如:發(fā)芽率、成長率等。剛好100%,如:正確率,合格率等。
百分數(shù)的意義:
百分數(shù)只可以表示分率,而不能表示具體量,所以不能帶單位。百分數(shù)概念的形成應(yīng)以學(xué)生實際生活中的事例或工農(nóng)業(yè)生產(chǎn)中的事例引入。
日常應(yīng)用:
每天在電視里的天氣預(yù)報節(jié)目中,都會報出當(dāng)天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風(fēng),降水概率是10%,早晚應(yīng)增加衣服。20%、10%讓人一目了然,既清楚又簡練。
知識點擴展
圓的定義:
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,半圓既不是優(yōu)弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。
圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
內(nèi)心和外心:和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。
圓和點的位置關(guān)系:圓和點的位置關(guān)系:以點P與圓O的為例(設(shè)P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),0≤PO
百分數(shù)的由來:200多年前,瑞士數(shù)學(xué)家歐拉,在《通用算術(shù)》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數(shù)來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數(shù),我們把它叫做分數(shù)。而后,人們在分數(shù)的基礎(chǔ)上又以100做基數(shù),發(fā)明了百分數(shù)。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇5
1、對長方形、正方形、三角形和圓的認識,能分辨出四種基本的圖形。
2、學(xué)會觀察,能在生活中找出基本的形狀,會舉例。
3、能區(qū)分出面和體的關(guān)系,體會“面在體上”。
4、能找出一組圖形的.規(guī)律。
5、能在復(fù)雜的圖案中找出基本的圖形。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇6
(一)口算除法
1、整十?dāng)?shù)除整十?dāng)?shù)或幾百幾十的數(shù)的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表內(nèi)除法計算。利用除法運算的性質(zhì):將被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。如:200÷50想20÷5=4,所以200÷50=4。
2、兩位數(shù)除兩位數(shù)或三位數(shù)的估算方法:除法估算一般是把算式中不是整十?dāng)?shù)或幾百幾十的數(shù)用“四舍五入”法估算成整十?dāng)?shù)或幾百幾十的數(shù),再進行口算。注意結(jié)果用“≈”號。
(二)筆算除法
1、除數(shù)是兩位數(shù)的.筆算除法計算方法:從被除數(shù)的高位除起,先用除數(shù)試除被除數(shù)的前兩位,如果前兩位數(shù)比除數(shù)小,就看前三位。除到被除數(shù)的哪一位,商就寫在那一位的上面。每次除后余下的數(shù)必須比除數(shù)小。
2、除數(shù)不是整十?dāng)?shù)的兩位數(shù)的除法的試商方法:如果除數(shù)是一個接近整十?dāng)?shù)的兩位數(shù),就用“四舍五入”法把除數(shù)看做與它接近的整十?dāng)?shù)試商,也可以把除數(shù)看做與它接近的幾十五,再利用一位數(shù)的乘法直接確定商。
3、商一位數(shù):
(1)兩位數(shù)除以整十?dāng)?shù),如:62÷30;
(2)三位數(shù)除以整十?dāng)?shù),如:364÷70
(3)兩位數(shù)除以兩位數(shù),如:90÷29(把29看做30來試商)
(4)三位數(shù)除以兩位數(shù),如:324÷81(把81看做80來試商)
(5)三位數(shù)除以兩位數(shù),如:104÷26(把26看做25來試商)
(6)同頭無除商八、九,如:404÷42(被除數(shù)的位和除數(shù)的位一樣,即“同頭”,被除數(shù)的前兩位除以除數(shù)不夠除,即“無除”,不是商8就是商9。)
(7)除數(shù)折半商四五,如:252÷48(除數(shù)48的一半24,和被除數(shù)的前兩位25很接近,不是商4就是商5。)
4、商兩位數(shù):(三位數(shù)除以兩位數(shù))
(1)前兩位有余數(shù),如:576÷18
(2)前兩位沒有余數(shù),如:930÷31
5、判斷商的位數(shù)的方法:
被除數(shù)的前兩位除以除數(shù)不夠除,商是一位數(shù);被除數(shù)的前兩位除以除數(shù)夠除,商是兩位數(shù)。
(三)商的變化規(guī)律
1、商變化:
(1)被除數(shù)不變,除數(shù)乘(或除以)幾(0除外),商就除以(或乘)相同的數(shù)。
(2)除數(shù)不變,被除數(shù)乘(或除以)幾(0除外)商也乘(或除以)相同的數(shù)。
2、商不變:被除數(shù)和除數(shù)同時乘(或除以)相同的數(shù)(0除外),商不變。
(四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13
小學(xué)數(shù)學(xué)知識點總結(jié) 篇7
第一單元:數(shù)一數(shù)、比多少:
1、數(shù)一數(shù)
數(shù)數(shù):數(shù)數(shù)時,按一定的順序數(shù),從1開始,數(shù)到最后一個物體所對應(yīng)的那個數(shù),即最后數(shù)到幾,就是這種物體的總個數(shù)。
2、比多少
同樣多:當(dāng)兩種物體一一對應(yīng)后,都沒有剩余時,就說這兩種物體的數(shù)量同樣多。
比多少:當(dāng)兩種物體一一對應(yīng)后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。
比較兩種物體的多或少時,可以用一一對應(yīng)的方法。
第二單元:位置:
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、后
體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。
同一物體,相對于不同的參照物,前后位置關(guān)系也會發(fā)生變化。
從而得出:確定兩個以上物體的前后位置關(guān)系時,要找準參照物,選擇的參照物不同,相對的前后位置關(guān)系也會發(fā)生變化。
3、認識左、右
以自己的左手、右手所在的位置為標(biāo)準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。
第三單元:1-5的認識和加減法:
一、1——5的認識
1、1—5各數(shù)的含義:每個數(shù)都可以表示不同物體的數(shù)量。有幾個物體就用幾來表示。
2、1—5各數(shù)的數(shù)序
從前往后數(shù):1、2、3、4、5。
從后往前數(shù):5、4、3、2、1。
3、1—5各數(shù)的.寫法:根據(jù)每個數(shù)字的形狀,按數(shù)字在田字格中的位置,認真、工整地進行書寫。
二、比大小
1、前面的數(shù)等于后面的數(shù),用“=”表示,即3=3,讀作3等于3。前面的數(shù)大于后面的數(shù),用“>”表示,即3>2,讀作3大于2。前面的數(shù)小于后面的數(shù),用“;”表示,即3;4,讀作3小于4。
2、填“>”或“;”時,開口對大數(shù),尖角對小數(shù)。
三、第幾
1、確定物體的排列順序時,先確定數(shù)數(shù)的方向,然后從1開始點數(shù),數(shù)到幾,它的順序就是“第幾”。第幾指的是其中的某一個。
2、區(qū)分“幾個”和“第幾”
“幾個”表示物體的多少,而“第幾”只表示其中的一個物體。
四、分與合
數(shù)的組成:一個數(shù)(1除外)分成幾和幾,先把這個數(shù)分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1。
把一個數(shù)分成幾和幾時,要有序地進行分解,防止重復(fù)或遺漏。
五、加法
1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。
2、加法的計算方法:計算5以內(nèi)數(shù)的加法,可以采用點數(shù)、接著數(shù)、數(shù)的組成等方法。其中用數(shù)的組成計算是最常用的方法。
六、減法
1、減法的含義:從總數(shù)里去掉(減掉)一部分,求還剩多少用減法計算。
2、減法的計算方法:計算減法時,可以用倒著數(shù)、數(shù)的分成、想加算減的方法來計算。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇8
1.奇偶性
問題
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原則
形如:abc=100a+10b+c
3.數(shù)的整除特征:
整除數(shù)特征
2末尾是0、2、4、6、8
3各數(shù)位上數(shù)字的和是3的倍數(shù)
5末尾是0或5
9各數(shù)位上數(shù)字的和是9的倍數(shù)
11奇數(shù)位上數(shù)字的和與偶數(shù)位上數(shù)字的和,兩者之差是11的倍數(shù)
4和25末兩位數(shù)是4(或25)的.倍數(shù)
8和125末三位數(shù)是8(或125)的倍數(shù)
7、11、13末三位數(shù)與前幾位數(shù)的差是7(或11或13)的倍數(shù)
4.整除性質(zhì)
、偃绻鹀|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
、廴绻鸼|a,c|a,且(b,c)=1,那么bc|a。
、苋绻鹀|b,b|a,那么c|a.
、輆個連續(xù)自然數(shù)中必恰有一個數(shù)能被a整除。
5.帶余除法
一般地,如果a是整數(shù),b是整數(shù)(b≠0),那么一定有另外兩個整數(shù)q和r,0≤r
當(dāng)r=0時,我們稱a能被b整除。
當(dāng)r≠0時,我們稱a不能被b整除,r為a除以b的余數(shù),q為a除以b的不完全商(亦簡稱為商)。用帶余數(shù)除式又可以表示為a÷b=q……r,0≤r
小學(xué)生奧數(shù)知識點
數(shù)列求和:
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;
項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示。
基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an=a1+(n-1)d;
通項=首項+(項數(shù)一1)×公差;
數(shù)列和公式:sn,=(a1+an)×n÷2;
數(shù)列和=(首項+末項)×項數(shù)÷2;
項數(shù)公式:n=(an+a1)÷d+1;
項數(shù)=(末項-首項)÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末項-首項)÷(項數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式
小學(xué)奧數(shù)幾何知識點整理
鳥頭定理即共角定理。
燕尾定理即共邊定理的一種。
共角定理:
若兩三角形有一組對應(yīng)角相等或互補,則它們的面積比等于對應(yīng)角兩邊乘積的比。
共邊定理:
有一條公共邊的三角形叫做共邊三角形。
共邊定理:設(shè)直線AB與PQ交與M則S△PAB/S△QAB=PM/QM
這幾個定理大都利用了相似圖形的方法,但小學(xué)階段沒有學(xué)過相似圖形,而小學(xué)奧數(shù)中,常常要引入這些,實在有點難為孩子。
為了避開相似,我們用相應(yīng)的底,高的比來推出三角形面積的比。
例如燕尾定理,一個三角形ABC中,D是BC上三等分點,靠近B點。連接AD,E是AD上一點,連接EB和EC,就能得到四個三角形。
很顯然,三角形ABD和ACD面積之比是1:2
因為共邊,所以兩個對應(yīng)高之比是1:2
而四個小三角形也會存在類似關(guān)系
三角形ABE和三角形ACE的面積比是1:2
三角形BED和三角形CED的面積比也是1:2
所以三角形ABE和三角形ACE的面積比等于三角形BED和三角形CED的面積比,這就是傳說中的燕尾定理。
以上是根據(jù)共邊后,高之比等于三角形面積之比證明所得。
必須要強記,只要理解,到時候如何變形,你都能會做。至于鳥頭定理,也不要死記硬背,掌握原理,用起來就會得心應(yīng)手。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇9
1、平均分的含義:把一些物品分成幾份,每份分得同樣的多,叫做平均分。
除法就是用來解決平均分問題的。
2、平均分里有兩種情況:
(1)把一些東西平均分成幾份,求每份是多少;用除法計算,總數(shù)÷份數(shù)=每份數(shù)
例:24本練習(xí)本,平均分給6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一個數(shù)里面有幾個幾)把一個數(shù)量按每份是多少分成一份,求能平均分成幾份;用除法計算,總數(shù)÷每份數(shù)=份數(shù)
例:24本練習(xí)本,每人4本,能分給多少人?
列式:24÷4=6
3、除法算式的含義:只要是平均分的過程,就可以用除法算式表示。
除法算式的讀法:從左到右的順序讀,“÷”讀作除以,“=”讀作等于,其他數(shù)字不變。
例如:12÷4=3讀作(12除以4等于3)
例:42÷7=6 42是(被除數(shù)),7是(除數(shù)),6是(商;這個算式讀作(42除以7等于6 )。
4、除法算式各部分名稱:在除法算式中,除號前面的數(shù)就被除數(shù),除號后面的數(shù)叫除數(shù),所得的數(shù)叫商。
被除數(shù)÷除數(shù)=商。變式:被除數(shù)÷商=除數(shù)(如何求被除數(shù),想:除數(shù)×商=被除數(shù)。)
5、用2~6的乘法口訣求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口訣求商。
2、用乘法口訣求商時,想除數(shù)和幾相乘的被除數(shù)。
一句口訣可以寫四個算式。(乘數(shù)相同的除外)。
例:用“三八二十四”這句口訣
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
計算方法:12÷4=( )時,想:( )四十二,所以商是( ).
6、解決問題
1、解決有關(guān)平均分問題的`方法:
總數(shù)÷每份數(shù)=份數(shù)、總數(shù)÷份數(shù)=每份數(shù)、
因數(shù)×因數(shù)=積、一個因數(shù)=積÷另一個因數(shù)
2、用乘法和除法兩步計算解決實際問題的方法:
(1)所求問題要求求出總數(shù),用乘法計算;
(2)所求問題要求求出份數(shù)或每份數(shù),用除法計算。
(3)8個果凍,每2個一份,能分成幾份?求8里有幾個2,用除法計算。
(4)24里面有( )個4,,20里面有( )個5。(用除法計算。)
(5)最小公倍數(shù)問題:一堆水果,3個人正好分完,4個人也正好分完,問這堆水果最少有幾個?
第三單元圖形的運動
1、軸對稱圖形:沿一條直線對折,兩邊完全重合。對折后能夠完全重合的圖形是軸對稱圖形,折痕所在的直線叫對稱軸。
成軸對稱圖形的漢字:
一,二,三,四,六,八,十,大,干,豐,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,畫,傘,王,人,非,菲,天,典,奠,旱,春,畝,目,山,單,殺,美,春,品,工,天,網(wǎng),回,喜,莫,罪,夫,黑,里,亞。
2、平移:當(dāng)物體水平方向或豎直方向運動,并且物體的方向不發(fā)生改變,這種運動是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。
(記住:平移只能上下移動或左右移動)
3、旋轉(zhuǎn):體繞著某一點或軸進行圓周運動的現(xiàn)象就是旋轉(zhuǎn)。(例如:旋轉(zhuǎn)木馬、轉(zhuǎn)動的風(fēng)扇、轉(zhuǎn)動的車輪等)
(一)填空
1、汽車在筆直的公路上行駛,車身的運動是( )現(xiàn)象
2、教室門的打開和關(guān)閉,門的運動是( )現(xiàn)象。
A.平移B旋轉(zhuǎn)C平移和旋轉(zhuǎn)
3、下面( )的運動是平移。
A、旋轉(zhuǎn)的呼啦圈B、電風(fēng)扇扇葉C、撥算珠
小學(xué)數(shù)學(xué)知識點總結(jié) 篇10
數(shù)的產(chǎn)生
阿拉伯?dāng)?shù)字的由來:古代印度人創(chuàng)造了阿拉伯?dāng)?shù)字后,大約到了公元7世紀的時候,這些數(shù)字傳到了阿拉伯地區(qū)。到13世紀時,意大利數(shù)學(xué)家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯?dāng)?shù)字做了詳細的介紹。后來,這些數(shù)字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數(shù)字是從阿拉伯地區(qū)傳入的,所以便把這些數(shù)字叫做阿拉伯?dāng)?shù)字。以后,這些數(shù)字又從歐洲傳到世界各國。
阿拉伯?dāng)?shù)字傳入我國,大約是13到14世紀。由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯?dāng)?shù)字當(dāng)時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數(shù)學(xué)成就的吸收和引進,阿拉伯?dāng)?shù)字在我國才開始慢慢使用,阿拉伯?dāng)?shù)字在我國推廣使用才有100多年的歷史。阿拉伯?dāng)?shù)字現(xiàn)在已成為人們學(xué)習(xí)、生活和交往中最常用的數(shù)字了。
自然數(shù)
用以計量事物的件數(shù)或表示事物次序的數(shù)。
即用數(shù)碼0,1,2,3,4,……所表示的'數(shù)。表示物體個數(shù)的數(shù)叫自然數(shù),自然數(shù)由0開始(包括0),一個接一個,組成一個無窮的集體。
計算工具
算盤、計算器、計算機
射線
在幾何學(xué)中,直線上的一點和它一旁的部分所組成的圖形稱為射線。如下圖所示:
射線特點
(1)射線只有一個端點,它從一個端點向另一邊無限延長。
(2)射線不可測量。
直線
直線是點在空間內(nèi)沿相同或相反方向運動的軌跡。
線段
線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。其中AB表示直線上的任意兩點。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇11
1.分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
2.分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3.分數(shù)乘法意義
分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。
4.分數(shù)乘整數(shù):數(shù)形結(jié)合、轉(zhuǎn)化化歸
5.倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。
6.分數(shù)的倒數(shù)
找一個分數(shù)的倒數(shù),例如3/4把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3.3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。
7.整數(shù)的倒數(shù)
找一個整數(shù)的`倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。
8.小數(shù)的倒數(shù):
普通算法:找一個小數(shù)的倒數(shù),例如0.25,把0.25化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1
9.用1計算法:也可以用1去除以這個數(shù),例如0.25,1/0.25等于4,所以0.25的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。
10.分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。
11.分數(shù)除法計算法則:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
12.分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。
13.分數(shù)除法應(yīng)用題:先找單位1。單位1已知,求部分量或?qū)?yīng)分率用乘法,求單位1用除法。
數(shù)學(xué)0的數(shù)學(xué)性質(zhì)
1、0既不是正數(shù)也不是負數(shù),而是介于-1和+1之間的整數(shù)。
2、0的相反數(shù)是0,即-0=0。
3、0的絕對值是其本身。
4、0乘任何實數(shù)都等于0,除以任何非零實數(shù)都等于0,任何實數(shù)加上0等于其本身。
5、0沒有倒數(shù)和負倒數(shù),一個非0的數(shù)除以0在實數(shù)范圍內(nèi)無意義。
6、0的正數(shù)次方等于0,0的負數(shù)次方無意義,因為0沒有倒數(shù)。
7、除0外,任何數(shù)的的0次方等于1。
8、0也不能做除數(shù)、分數(shù)的分母、比的后項。
9、0的階乘等于1。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇12
第一章————除法
1、用乘法口訣做除法,余數(shù)一定要比除數(shù)小;
2、應(yīng)用題中,除數(shù)和余數(shù)的單位不一樣;
商的單位是問題的單位,余數(shù)的單位和被除數(shù)的單位相同;
3、解決生活問題,如提的問題是“至少需要幾條船?”,用進一法(用商加1)”,乘船、坐車、坐板凳等,讀懂題目再作答。
第二章————方向與位置(認識方向)
1、地圖上的方向口訣:上北下南,左西右東;
辨認方向時要畫方向標(biāo)。
2、“小貓在小狗的()方,()在小狗的東面”,是以小狗家為中心點,畫出方位坐標(biāo),確定方向;
“小豬在小馬的()方”,“小馬的()方是小豬”,是以小馬家為中心點,畫出方位坐標(biāo),確定方向。
3、太陽早上從東邊升起,西邊落下;
指南針一頭指著(),一頭指著()。小明早上面向太陽時,他的前面是(),后面是(),左面是(),右面是()
4、當(dāng)吹東南風(fēng)時,紅旗往()飄;
吹西北風(fēng)時,紅旗往()飄。
第三章————生活中的大數(shù)(認識10000以內(nèi)的數(shù))
1、計數(shù)器上從右邊數(shù)起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左邊是()位,右邊是()位。
2、一個四位數(shù)最高位是()位,它的千位是5,個位是2,其他的數(shù)位是0,它是()。
3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。
4、由三個千,五個一組成的數(shù)是(),由9個一,兩個百和一個千組成的數(shù)是()。
5、讀數(shù)時,要從高讀起,中間有一個或兩個0,都只讀一個0個“零”;
末尾不管有幾個“0”,都不讀;
寫數(shù),末尾不管有幾個0,都不讀。寫數(shù)時,從高位寫起,按照數(shù)位順序表寫,中間或末尾哪一位上沒有數(shù),就寫“0”占位。
6、10個十是(),10個一百是(),10個一千是(),100個一百是()。10000里面有()個百,1000里面有()個十。
7、最大的三位數(shù)是(),最小的三位數(shù)是()。最大的四位數(shù)是(),最小的四位數(shù)是()。
8、比較大小時,先比較位數(shù),位數(shù)多的數(shù)就大,位數(shù)少的數(shù)就小;
位數(shù)相同時,從最高位開始比較,最高位上的數(shù)字相同的,就比下一位,直到比出大小。從大到小用“>”,從小到大用“;”。
第四章————測量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相鄰單位之間的進率是“10”;
2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;
3、長度單位比較大小,首先要觀察單位,換成統(tǒng)一的單位之后才能比較;
4、長度單位的加減法,米加米,分米加分米.......就是把相同的單位進行加減。
第五章————加與減1、口算整百加減整百時,想成幾個百加減幾個百,加減整十?dāng)?shù)的'算理也相同。
2、計算時要注意:(1)、相同數(shù)位要對齊,從個位算起。(2)、計算加法時,哪一位相加滿十,要向前一位“進一”。(3)、計算減法時,哪一位不夠減時,要向前一位“借1”,但是不要忘記退位時要減1;
3、在估算中,如果估算到百位,就看十位數(shù)是多少,如果十位上的數(shù)大于5,則百位進1,十位和個位舍去,變?yōu)?,如估算678,就變?yōu)?00;
如果十位上的數(shù)小于5,則百位不變,十位和個位舍去,變?yōu)?,如估算607,就變?yōu)?00;
4、加數(shù)+加數(shù)=和一個加數(shù)=和-另一個加數(shù)如:()+156=368(用368-156計算)280+()=760(用760-280計算)
5、被減數(shù)-減數(shù)=差被減數(shù)=減數(shù)+差減數(shù)=被減數(shù)-差如:()-156=368(用156+368計算)
980-()=760(用980-760計算)
6、加法的驗算方法:(1)交換加數(shù)的位置,看和是否相同,(2)用和減去其中一個加數(shù),看是否等于另一個加數(shù);
7、減法的驗算方法:(1)用被減數(shù)減去差,看結(jié)果是否等于減數(shù),(2)用減數(shù)加上差,看結(jié)果是否等于被減數(shù)。注意:運算時不要抄錯數(shù),也不要直接把驗算結(jié)果抄上。
第六章————認識角1、每個角都是由1個頂點和2條邊組成;
2、按角的大小,將角分為銳角、直角、鈍角,所有的直角都相等,比直角小的是銳角,比直角大的是鈍角。要知道一個角是什么角,可以用三角板上的直角比一比。
3、比較角的大小時要注意:角的大小與邊的長短無關(guān),與角的張口大小有關(guān),張口越大角就越大;
4、正方形有四個直角,四條邊都相等;
長方形有四條邊,四個直角,長方形的對邊相等;
5、平行四邊形有四條邊,有2個銳角,2個鈍角,對邊相等,對角相等。
第七章————時、分、秒1、鐘面上有12個大格,每個大格里有5個小格,一共有60個小格;
2、秒針走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分鐘;
3、分針走一小格是1分,走一大格是5分,走一圈是60分,也就是1小時;
4、時針走一大格是1小時,走一圈是12小時;
5、時、分、秒相鄰單位的進率是60;
1時=60分1分=60秒6、比較時間,首先要觀察,統(tǒng)一單位之后再比較大小。
7、時間的加減:分減分,時減時,當(dāng)分不夠減時,要向前一位借1,化成60,再相加減;
第八章————統(tǒng)計1、記錄并學(xué)會計算,誰多,誰少。
小學(xué)數(shù)學(xué)知識點總結(jié) 篇13
測量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。
2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、在計算長度時,只有相同的長度單位才能相加減。
小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關(guān)系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關(guān)系式中有幾個0,就去掉幾個0)。
5、長度單位的關(guān)系式有:(每兩個相鄰的長度單位之間的進率是10)
進率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,進率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
進率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
6、當(dāng)我們表示物體有多重時,通常要用到(質(zhì)量單位)。在生活中,稱比較輕的物品的質(zhì)量,可以用(克)做單位;稱一般物品的質(zhì)量,常用(千克)做單位;計量較重的或大宗物品的質(zhì)量,通常用(噸)做單位。
小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個0;
把千克換算成噸,是在數(shù)字的末尾去掉3個0。
7、相鄰兩個質(zhì)量單位進率是1000。
1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克
萬以內(nèi)的加法和減法
1、認識整千數(shù)(記憶:10個一千是一萬)
2、讀數(shù)和寫數(shù)(讀數(shù)時寫漢字寫數(shù)時寫阿拉伯?dāng)?shù)字)
一個數(shù)的末尾不管有一個0或幾個0,這個0都不讀。
一個數(shù)的中間有一個0或連續(xù)的兩個0,都只讀一個0。
3、數(shù)的大小比較:
位數(shù)不同的數(shù)比較大小,位數(shù)多的數(shù)大。
位數(shù)相同的數(shù)比較大小,先比較這兩個數(shù)的位上的數(shù),如果位上的數(shù)相同,就比較下一位,以此類推。
4、求一個數(shù)的近似數(shù):
記憶:看最位的后面一位,如果是0—4則用四舍法,如果是5—9就用五入法。
的三位數(shù)是位999,最小的三位數(shù)是100,的四位數(shù)是9999,最小的四位數(shù)是1000。
的.三位數(shù)比最小的四位數(shù)小1。
5、被減數(shù)是三位數(shù)的連續(xù)退位減法的運算步驟:
列豎式時相同數(shù)位一定要對齊;
減法時,哪一位上的數(shù)不夠減,從前一位退1;如果前一位是0,則再從前一位退1。
6、在做題時,我們要注意中間的0,因為是連續(xù)退位的,所以從百位退1到十位當(dāng)10后,還要從十位退1當(dāng)10,借給個位,那么十位只剩下9,而不是10。(兩個三位數(shù)相加的和:可能是三位數(shù),也有可能是四位數(shù)。)
7、公式被減數(shù)=減數(shù)+差
和=加數(shù)+另一個加數(shù)
減數(shù)=被減數(shù)—差
加數(shù)=和—另一個加數(shù)
差=被減數(shù)—減數(shù)
符號/是什么意思數(shù)學(xué)
/在數(shù)學(xué)中是“除”的意思。例如:4/5我們可以說4除以5或者四分之五。數(shù)學(xué)符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字,F(xiàn)代數(shù)學(xué)常用的數(shù)學(xué)符號已超過了200個,其中,每一個符號都有一段有趣的經(jīng)歷。
實數(shù)知識點
平方根:如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):實數(shù)分有理數(shù)和無理數(shù)。在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
【小學(xué)數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
小學(xué)數(shù)學(xué)知識點總結(jié)12-12
小學(xué)數(shù)學(xué)知識點的總結(jié)09-08
小學(xué)數(shù)學(xué)知識點總結(jié)12-05
小學(xué)數(shù)學(xué)知識點總結(jié)06-30
小學(xué)的數(shù)學(xué)知識點總結(jié)07-31
小學(xué)數(shù)學(xué)知識點總結(jié)05-16
北京小學(xué)數(shù)學(xué)知識點總結(jié)08-12
小學(xué)數(shù)學(xué)知識點總結(jié)優(yōu)秀05-18